[数学基础] 4 欧几里得算法&扩展欧几里得算法
欧几里得算法
欧几里得算法基于的性质:
若\(d|a, a|b\),则\(d|(ax+by)\)
\((a,b)=(b,a~mod~b)\)
第二条性质证明:
\(\because a~mod~b=a-\lfloor \frac{a}{b} \rfloor\times b\),令\(c=\lfloor \frac{a}{b} \rfloor\)
则问题等价于证明\((a,b)=(b,a-c\times b)\)
这个证明方法就和裴蜀定理的证明差不多。
证明:令\(d=gcd(a,b)\),则\(d|a,d|b\),易得\(d|(a-c\times b)\)。则\(d\)为\(b,(a-c\times b)\)的公因数。
那么令\(D=(b,a-c\times b)\),\(d\leq D\)。
\(D|b,D|(a-c\times b)\),易得\(D|a\),则\(D\leq (a,b)=d\)。
因此\(d=D\),即\(d=gcd(b,a-c\times b)\)
欧几里得算法模板
int gcd(int a, int b){
return b ? gcd(b, a % b) : a;
}
扩展欧几里得算法
1. 前置知识-裴蜀定理
裴蜀定理:\(\forall a,b\in \Z\),令\(d=(a,b)\),那么对于任意的整数\(x,y\in \Z\),\(ax+by=kd\)。特别的,一定\(\exist x,y\),使得\(ax+by=d\)成立。
丢番图方程\(ax+by=m\)有解,当且仅当\(m\)是\(d\)的倍数。丢番图方程有解时必然有无穷多个解,每组解\(x,y\)都称为裴蜀数,可用辗转相除法求得。
证明:
(前半句)\(\because d|a,d|b\),\(\therefore \forall x,y\in Z, d|(ax+by)\)
(特别的...)设\(s\)为\(ax+by\)的最小正值,令\(q=\lfloor \frac{a}{s} \rfloor\),\(r=a ~mod ~s\)。
则\(r=a-\lfloor \frac{a}{s} \rfloor\times s=a-q\times(ax+by)=a(1-qx)+b(-qy)\),即\(r\)也为\(a,b\)的线性组合
\(\because r=a~mod~s\) ,\(\therefore 0\leq r <s\)
又\(s\)为\(ax+by\)的最小正值,可得\(r=0\),即\(a ~mod~s=0\)。
\(\therefore s|a\),再设\(r_2=b~mod~s\),同理可得\(s|b\)。因此\(s\)为\(a,b\)的公因子,\(d\geq s\)。
\(\because d|a,d|b,s=ax+by\),\(\therefore d|s\),\(d\leq s\)。
因此\(d=s\),命题得证。
推论1:\((a,b)=1\)的充分必要条件是\(\exist x,y\in Z, s.t.~~ax+by=1\)。
推论2:裴蜀等式也可以用来给最大公约数定义:\(d\)其实就是最小的可以写成\(ax + by\)形式的正整数。
推论2:设\(a_1,a_2,...,a_n\)为\(n\)个整数,\(d\)是它们的最大公约数,那么\(\exist x_1,x_2,...,x_n\),使得\(a_1x_1+a_2x_2+...+a_nx_n=d\)成立。特别的,若\(a_1,a_2,...,a_n\)是互质的(不是两两互质),那么\(\exist x_1,x_2,...,x_n\),使得\(a_1x_1+a_2x_2+...+a_nx_n=1\)成立。
2. 扩展欧几里得算法
如何用扩展欧几里得算法求裴蜀数?
假如要求解的不定方程(又名丢番图方程)为\(ax+by=m\)
我们现在先求解不定方程\(ax+by=d\),其中\(d=(a,b)\),\(d|m\)。
由欧几里得算法性质1,2可知\((a,b)=(b,a~mod~b)=(b, a-\lfloor \frac{a}{b} \rfloor\times b)\)
若\(ax_1+by_1=d\)有解,则\(by_2+(a~mod~b)x_2=d\)一定有解,即\(by_2+(a-\lfloor \frac{a}{b} \rfloor\times b)x_2=d\)有解。
化简得\(ax_2+b(y_2-\lfloor \frac{a}{b} \rfloor\times x_2)=d\),那么\(x_1=x_2,y_1=y_2-\lfloor \frac{a}{b} \rfloor\times x_2\)。
于是可以递归进行操作,当\(b'=0\)时,\((a',0)=d\),也就是\(a'=d\),此时\(x=1,y=0\)为一组平凡解,再不断带回,即可得到不定方程的一组特解,设此特解为\(\{x_1,y_1\}\)。则通解即为\(\{x_1+k\times\frac{b}{d}, y_1-k\times\frac{a}{d}, k\in \Z\}\)
证明通解是方程的解:
\(ax+by=a\times(x_1+k\times\frac{b}{d})+b\times(y_1-k\times\frac{a}{d})\\=ax_1+by_1+k\times (\frac{ab}{d}-\frac{ab}{d})=d\)
因此,通解是可以使等式成立的。
那么同理,\(ax+by=m\),通解也是\(\{x_0+k\times \frac{b}{d}, y_0-k\times \frac{a}{d}\}\)。
- 代码
int exgcd(int a, int b, int &x, int &y){
if (!b){
x = 1, y = 0;
return a;
}
int d = exgcd(b, a%b, y, x);
y -= a / b * x;
return d;
}
[数学基础] 4 欧几里得算法&扩展欧几里得算法的更多相关文章
- noip知识点总结之--欧几里得算法和扩展欧几里得算法
一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a ...
- 扩展欧几里得算法(extgcd)
相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...
- 欧几里得算法与扩展欧几里得算法_C++
先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证 ...
- vijos1009:扩展欧几里得算法
1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...
- ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)
1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...
- 浅谈扩展欧几里得算法(exgcd)
在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...
- (light oj 1306) Solutions to an Equation 扩展欧几里得算法
题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...
- 『扩展欧几里得算法 Extended Euclid』
Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...
- 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)
题面 题目描述 给出一个有理数 c=\frac{a}{b} ,求 c mod19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...
随机推荐
- (转载)MySQL删除所有表的外键约束、禁用外键约束
其实如果想删除所有表可以直接如下操作: 在navicat中直接选中所有表,然后右键删除表即可,会有提示,一路确定,就会先删掉没有外键的表和字表,只要一路确定,删几批就把表都删完了,并不算太麻烦. 转: ...
- Python - Pycharm常用快捷键
1. 自动格式调整: pycharm有自动调整代码格式的快捷键,默认为Alt+Ctrl+L 2. 选中相同字符: 快捷键组合:Ctrl + Shift + Alt + J 3.批量缩进: 选择代码区域 ...
- Rust 中的数据布局-repr
repr(Rust) 首先,所有类型都有一个以字节为单位的对齐方式,一个类型的对齐方式指定了哪些地址可以用来存储该值.一个具有对齐方式n的值只能存储在n的倍数的地址上.所以对齐方式 2 意味着你必须存 ...
- 设置python 虚拟环境 virtualenv django 虚拟环境
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/development_environment Ubuntu vir ...
- 顺利通过EMC实验(12)
- 好用开源的C#快速开发平台
NFine 是基于 C# 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展,让Web开发更迅速.简单.NFine是一套基于 ASP.NET ...
- IOS中弹出键盘后出现fixed失效现象的解决方案
概述 这个问题常出现在移动web开发中聊天或者留言页面的绝对定位输入框上,页面超过屏幕大小时候输入框focus状态下(键盘弹出)绝对定位的元素失效,导致页面滚动时候把定位元素一并带走,体验十分不好,在 ...
- ffmpeg将视频生成gif
1.安装ffmpeg 2.cmd中输入 ffmpeg -i 0.mp4 -f gif 0.gif 即可将视频转为gif
- JavaScript高级教程
JavaScript高级教程 基础总结深入 数据类型 分类 you are so nb! undefined :undefined string :任意字符串 sybmol: object:任意对象, ...
- 测试脚本配置、ORM必知必会13条、双下划线查询、一对多外键关系、多对多外键关系、多表查询
测试脚本配置 ''' 当你只是想测试django中的某一个文件内容 那么你可以不用书写前后端交互的形式而是直接写一个测试脚本即可 脚本代码无论是写在应用下的test.py还是单独开设py文件都可以 ' ...