[2] Bert 论文精读
BERT是NLP领域让预训练这件事情出圈的工作。
开篇Introduction介绍了两类主流的预训练方法:
1、feature-based,即基于特征的,即我首先通过预训练得到一些比较好的特征,然后将这些特征作为额外的训练数据输入到模型中,从而使得模型在训练起来变得容易很多;
2、fine-tuning,即基于微调的。即我首先用其他数据集做预训练,训练好之后,我再去用我所需要的针对我的任务的数据集做微调,对我的模型的权重做一些小改动。
这两种方法都有一种局限性,即二者都是单向的模型,而Bert不是,正如其名字:Bidirectional Encoder Representations from Transformers
这个idea的主要来源很明确:我们平时处理NLP问题的模型都是单向的,但是虽然我们读一句话的时候总是从左到右这么读下来,但是在做一些其他任务的时候比如阅读理解、Q&A等等问题的时候,我们总会看完整个句子的全貌从而去理解这个句子的文本语义,因此如果能够让模型也做到这一点,效果会不会更好呢?
在conclusion写了,作者其实是把ELM0和GPT的idea拼接在一起,说得简单一些,就是用ELMo的双向,用Transformer实现。但具体到BERT这篇工作,我觉得还有一个更出众的点子在于《完形填空》。
Bert是一个微调模型,即先预训练,然后微调。

整体上来看,首先用一组没有label的数据做预训练,然后用有标号的对应下游任务的数据集去做微调。
其实说到底,Bert就是一个Transformer,只不过分成了预训练和微调。
另外注意一下Bert的Embedding是三个:

在做完形填空的时候,Bert用了概率mask的trick。因为他们发现直接mask掉15%的数据存在很多问题,因此选择了另外20%特殊的点。其中,10%为随机替换一个词,我觉得可以理解成噪音;另外10%就是将答案暴露出来,用答案预测答案,算是对mask的一种补偿。
而在做句子连贯性预测的时候,则50%为连贯的一组句子,50%为不连贯。
此外,他还有一个小trick,即Wordpiece,将一些比较长的单词切开。因为长单词往往有多重含义的词根,这些词根组合在一起可以表示一个新的完整的意思,但是这种长单词大部分都出现频率都不是很高,因此将这些内容切开,可以更好地让模型学习到一句话中的语义碎片。比如将homeless拆分成home与less。
然后我发现,作为一篇深度学习的文章,作为一个深度学习模型,Bert竟然没有整体的模型架构!!这真的是我第一次见。
当然了,作者对于这个操作也解释了,“我们基本上是直接把Transformer源码拿过来用了,因此我们也没必要详细再讲一次。”
这个是很值得思考的,作者没有提出新的架构,这确实是一个缝合的文章,但是他却有5w的引用。
Bert更大的特点,我觉得是证明了一点,用更大的数据集训练更大的模型会更好,但其实这个东西早就被证实了。另外就是预训练和微调的理念在NLP的出圈。
[2] Bert 论文精读的更多相关文章
- BERT 论文阅读笔记
BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...
- 【深度学习 论文篇 02-1 】YOLOv1论文精读
原论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1.pdf 笔记版论文链接:https://gite ...
- 用深度学习(DNN)构建推荐系统 - Deep Neural Networks for YouTube Recommendations论文精读
虽然国内必须FQ才能登录YouTube,但想必大家都知道这个网站.基本上算是世界范围内视频领域的最大的网站了,坐拥10亿量级的用户,网站内的视频推荐自然是一个非常重要的功能.本文就focus在YouT ...
- BERT论文解读
本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...
- bert论文笔记
摘要 BERT是“Bidirectional Encoder Representations from Transformers"的简称,代表来自Transformer的双向编码表示.不同于 ...
- 【DL论文精读笔记】Object Detection in 20 Y ears: A Survey目标检测综述
目标检测20年综述(2019) 摘要 Abstract 该综述涵盖了400篇目标检测文章,时间跨度将近四分之一世纪.包括目标检测历史上的里程碑检测器.数据集.衡量指标.基本搭建模块.加速技术,最近的s ...
- AFM论文精读
深度学习在推荐系统的应用(二)中AFM的简单回顾 AFM模型(Attentional Factorization Machine) 模型原始论文 Attentional Factorization M ...
- Faster-RCNN论文精读
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize objec ...
- 【DL论文精读笔记】 深度压缩
深度压缩 DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFM ...
- 【DL论文精读笔记】Image Segmentation Using Deep Learning: A Survey 图像分割综述
深度学习图像分割综述 Image Segmentation Using Deep Learning: A Survey 原文连接:https://arxiv.org/pdf/2001.05566.pd ...
随机推荐
- Vue02 Node下载安装
转 https://blog.csdn.net/A_awen/article/details/121952701 1 下载 https://nodejs.org/en/download/ 2 安装 全 ...
- P8_组件-view和scroll-view组件的基本用法
组件 小程序中组件的分类 小程序中的组件也是由宿主环境提供的,开发者可以基于组件快速搭建出漂亮的页面结构.官方把小程序的组件分为了 9 大类,分别是: 视图容器 基础内容 表单组件 导航组件 媒体组件 ...
- Hibernate多表关系
Hibernate多表关系 hibernate 一对多(多对一) 创建实体 配置ORM映射文件 创建测试文件 双方关系维护 级联操作 外键的维护权管理 双方关系维护.级联操作.外键维护权之间的关系 一 ...
- 吐血整理!2万字Java基础面试题(带答案)请收好!
熬夜整理了这么多年来的Java基础面试题,欢迎学习收藏,手机上可以点击这里,效果更佳https://mp.weixin.qq.com/s/ncbEQqQdJo0UaogQSgA0bQ 1.1 Hash ...
- ubuntu18.04开机后NVIDIA显卡驱动加载失败
1.开机按esc进入ubuntu高级选项,选择内核版本,之后回车 注意:记住此版本号 2.接下来按照如下操作 # If you change this file, run 'update-grub' ...
- Ubuntu 系统下搭建 SRS 流媒体服务器
一.克隆项目 git clone https://github.com/ossrs/srs 二.执行编译 cd srs/trunk sudo ./configure && make 三 ...
- 【研究生学习】SNR、Eb/N0和Es/N0的关系
SNR.Eb/N0与Es/N0的关系 在模拟通信中,SNR是一个非常有用的指标 实例说明
- 设备树编译链接报错arch/arm/boot/dts/imx50.dtsi:16:42: fatal error: dt-bindings/
1.vim scripts/Makefile.lib, add 3 lines into dtc_cpp_flags dtc_cpp_flags = -Wp,-MD,$(depfile).pre.t ...
- C#中播放mp3格式的音乐代码
在上课的时候需要播放音乐,然后C#语言自带的是播放wav格式的音乐,在网上搜了一下,有大佬写成了类封装好了,直接拿过来用就行了 using System; using System.Collectio ...
- LINUX 简单命令学习总结
命令知识点大纲: 一.默认目录的简单介绍 1)/root/用户名:如/root/test1,该目录为普通用户的家目录,所有用户创建后都能在该目录下找到自己对应的目录信息 /etc:该目录为配置文件存放 ...