关键路径 p3 清华复试上机题

题目描述

小H为了完成一篇论文,一共要完成n个实验。其中第i个实验需要a[i]的时问去完成。小H可以同时进行若干实验,但存在一些实验,只有当它的若干前置实验完成时,才能开始进行该实验。同时我们认为小H在一个实验的前置实验都完成时,就能马上开始该实验。

为了让小H 尽快完成论文,需要知道在最优的情况下,最后一个完成的实验什么时候完成。

小H还想知道,在保证最后一个实验尽快完成的情况下(即保证上一间的答案不变),他想知道每个实验最晚可以什么时候开始。

设第i个实验最早可能的开始时问为fi,不能响最后一个实验完成时间的最晚开始时间为gi,请证明\(\prod_{i=0}^{n}(g_i-f_i+1)\)除以\(10^9+7\)所得的余数能够保证题目有解。

输入

从标淮输入读入数据。

第一行输入两个整数n,m。

第二行输入n个正整数 a,a[2],…,a[n],描述完成每个实验所需要的时间。

接下来读入 m 行,每行读入两个整数u,v,表示编号为u的实验是编号为v的实验的前置实验。

对于所有的输入数据,都满足\(1\leqslant n \leqslant 10^5\),\(1\leqslant m \leqslant 5×10^5\),\(1\leqslant a_i\leqslant 10^6\).

输出

输出到标准输出。

第一行输出一个整数,表示完成实验的时间。

第二行输出一个整数表示\(\prod_{i=0}^{n}(g_i-f_i+1)\)除以\(10^9+7\)所得的余数。

样例输入

7 5

11 20 17 10 11 17 17

5 4

6 1

7 3

2 4

2 1

样例输出

34

7840

解题思路

求关键路径的长度,记录每个实验最早开始时间和最晚开始时间。典型关键路径问题。

代码实现

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

const int maxn = 1e5 + 7;
const int INF = INT_MAX;
const int MOD = 1e9 + 7; vector<int> graph[maxn];
int inDegree[maxn];
ll earliest[maxn];
ll latest[maxn];
ll timee[maxn]; ll criticalPath(int n) {
vector<int> topology;
queue<int> q;
for (int i = 1; i <= n; ++i) {
if (inDegree[i] == 0) {
q.push(i);
}
}
ll totalTime = 0;//总耗时
while (!q.empty()) {
int u = q.front();
topology.push_back(u);
q.pop();
for (int i = 0; i < graph[u].size(); ++i) {
int v = graph[u][i];
inDegree[v]--;
earliest[v] = max(earliest[v], timee[u] + latest[u]);//取最大值的原因:只有当前结点的所有前驱结点活动全部完成,才能完成本结点
if (inDegree[v] == 0) {
q.push(v);
totalTime = max(totalTime, earliest[v] + timee[v]);//关键路径长度为最大路径长度的路径
}
}
}
for (int i = topology.size() - 1; i >= 0; --i) {//逆拓扑排序求最迟开始时间
int u = topology[i];
if (graph[u].size() == 0) {
latest[u] = totalTime - timee[u];//出度为0的点,最晚开始时间为关键路径长度减去其耗费时间
} else {
latest[u] = INF;//后面要求最小值,初始化为极大值
}
for (int j = 0; j < graph[u].size(); ++j) {
int v = graph[u][j];
latest[u] = min(latest[u], latest[v] - timee[u]);//非出度为0的点,最晚开始时间为所有其后续节点最晚开始时间减去该节点耗费时间的最小值
}
}
return totalTime;
} int main() {
int n, m;
while (cin >> n >> m) {
memset(graph, 0, sizeof graph);
memset(inDegree, 0, sizeof inDegree);
memset(earliest, 0, sizeof earliest);
memset(latest, 0, sizeof latest);
memset(timee, 0, sizeof timee);
for (int i = 1; i <= n; i++) {
cin >> timee[i];
}
while (m--) {
int from, to;
cin >> from >> to;
graph[from].push_back(to);
inDegree[to]++;
}
ll totalTime = criticalPath(n);
ll answer = 1;
for (int i = 1; i <= n; ++i) {
answer *= latest[i] - earliest[i] + 1;
answer %= MOD;
}
cout << totalTime << endl << answer << endl;
}
return 0;
}

关键路径 p3 清华复试上机题的更多相关文章

  1. Twin Prime Conjecture(浙大计算机研究生保研复试上机考试-2011年)

    Twin Prime Conjecture                                            Time Limit: 2000/1000 MS (Java/Othe ...

  2. HDU 1234 (浙大计算机研究生复试上机考试-2005年) 开门人和关门人 (水)

    开门人和关门人 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  3. ZOJ问题(2010浙江大学研究生复试上机题目[找规律] hdoj 3788)

    ZOJ问题 pid=3788">点击打开链接 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  4. Java上机题(封装)(编写student类)

    今天帮大一的童鞋写Java上机题 题目虽然很简单,但是刚拿到题目的时候愣了一下,然后就疯狂get set QuQ 其实这是一个特别基本的封装的题目(之前实验室面试大二的时候竟然还有蛮多人不知道封装的概 ...

  5. Python语言上机题实现方法(持续更新...)

    Python语言上机题实现方法(持续更新...) 1.[字符串循环左移]给定一个字符串S,要求把S的前k个字符移动到S的尾部,如把字符串"abcdef"前面的2个字符'a'.'b' ...

  6. Java 哈希表(google 公司的上机题)

    1 哈希表(散列)-Google 上机题 1) 看一个实际需求,google 公司的一个上机题: 2) 有一个公司,当有新的员工来报道时,要求将该员工的信息加入(id,性别,年龄,住址..),当输入该 ...

  7. 九度OJ1486 /POJ 1029/2012北京大学研究生复试上机

    wa到死!wa到死!这是一个看着简单,坑及其多的题! 坑一:POJ上是单组输入,九度上是多组输入,妈蛋要是研究生复试遇到这种大坑肯定死掉啊!而且对于codeforces比较习惯的 同学肯定会觉得巨坑无 ...

  8. 华为上机题汇总----java

        以下华为上机题目都是网上整理得到的,代码都是自己调试过的,由于网上java答案较少,欢迎大家批评指正,也希望对准备华为上机的童鞋们有一点点帮助.在练习的过程中成长,加油!~~  第1题:输入字 ...

  9. 浙江大学PAT上机题解析之1014. 福尔摩斯的约会 (20)

    1014. 福尔摩斯的约会 (20) 时间限制   50 ms 内存限制   32000 kB 代码长度限制   8000 B 判题程序     Standard     作者     CHEN, Y ...

随机推荐

  1. EMS设置发送连接器和接收连接器邮件大小

    任务:通过EMS命令设置发送接收连接器和接收连接器的邮件大小限制值为50MB. 以Exchange管理员身份打开EMS控制台.在PowerShell命令提示符下. 键入以下命令设置接收-连接器的最大邮 ...

  2. formdata收集数据

    通常在收集表单的时候我们都要涉及到绑定上传附件,这时候就可以用formdata的形式携带文件流上传给服务器. formData是ajax2.0(XMLHttpRequest Level2)新提出的接口 ...

  3. 安装 UE 源码版

    # 安装 UE 源码版 ## 下载安装包 > - 先去 Github 找 UE 官方开源的引擎组(这个需要申请加入) > - 加入后找到开源的源码版项目下载 zip 到本地 > - ...

  4. Linux shell中2>&1的含义解释

    https://blog.csdn.net/zhaominpro/article/details/82630528

  5. 腾讯云OCR服务二次开发

    本文记录了对腾讯云OCR服务二次开发的代码和开发过程中遇到的问题.

  6. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  7. mouseenter 和 mouseover 的区别

    当鼠标移动到元素上时就会触发mouseenter事件 类似mouseover,它们两者之间的差别是 mouseover鼠标经过自身盒子会触发,经过子盒子还会触发.mouseenter只会经过自身盒子触 ...

  8. 3.3 常用Linux命令

    1.pwd命令 pwd命令用于显示用户当前所处的工作目录 2.cd命令 cd命令用于切换当前的工作路径,英文全称为"change directory",语法格式为"cd ...

  9. 百度SEO算法技术的局限性,怎么做才能有收益

    不知道大家有没有发现,我们使用百度的频率在减少,就算有时遇到一些问题,需要用百度来寻找答案,也会经常遇到搜索不到答案的情况.到底是出了什么问题?难道网络上的资源不够丰富了?浩如烟海的互联网,居然搜索不 ...

  10. Docker将镜像文件发布到阿里云

    一.创建新镜像文件 1.创建容器并在容器内创建一个文件夹 在容器内创建一个新文件主要是为了代表这个容器非镜像文件直接创建的容器,而是通过自定义在容器内创建了属于自己的文件 2.提交容器副本使之成为一个 ...