浅谈 exgcd
众所周知欧几里得算法是:
\]
也叫辗转相除法。
拓展欧几里得算法(exgcd),可以用来找到形如 \(ax+by=\gcd(a,b)\) 的方程的一组特解。
由裴蜀定理知,原方程一定有解。
我们利用辗转相除法(普通欧几里得算法)。
我们设 \(d=\gcd(a,b)\)。
我们可以知道,我们辗转相除法的边界是 \(a=d,b=0\),此时我们可以知道 \(a\) 就是最大公约数,我们还可以知道,在这时一定有一解为 \(x=1,y=0\),即 \(1\times a+0\times b=d\)。
我们知道 \(\gcd(a,b)=\gcd(b,a\mod b)\),如果我们可以推导出每一次的解 \(x\) 和 \(y\),与相除后的解 \(x'\) 和 \(y'\) 的关系;我们就可以算出其中的一个解了,(\(x\) 和 \(y\) 相当于是 \(a\) 和 $b \(的解,\)x'$ 和 \(y'\) 是 \(a\) 变成了 \(b\),\(b\) 变成了 \(a\mod b\) 时的解(辗转相除))。
轻易得知:
\(\begin{cases}
ax+by=d\\
bx'+(a\mod b)y'=d
\end{cases}\)
则:
bx'+\left(a-b\left\lfloor\dfrac{a}{b}\right\rfloor\right)y'&=d\\
bx'+ay'-b\left\lfloor\dfrac{a}{b}\right\rfloor y'&=d\\
ay'+b(x'-\left\lfloor\dfrac{a}{b}\right\rfloor y')&=d\\
\text{解得:}&\begin{cases}
x=y'\\y=x'-\left\lfloor\dfrac{a}{b}\right\rfloor y'
\end{cases}
\end{aligned}
\]
然后我们知道 \(x\) 与 \(x'\), \(y\) 与 \(y'\), 的关系后就可以求解了:
#include<iostream>
#include<cstdio>
using namespace std;
void exgcd(int a,int b,int& x,int& y) //x.y也可以用pair返回,这里用了引用
{
if (!b){x=1;y=0;return ;} //边界
gcd(b,a%b); //辗转相除
int tmp=y;y=x-(a/b)*y;x=tmp; //套公式
}
int main()
{
int a,b,x,y;
scanf("%d %d",&a,&b);
exgcd(a,b,x,y);
printf("%d %d",x,y);
return 0;
}
浅谈 exgcd的更多相关文章
- 浅谈Exgcd(扩展欧几里得)
我们已知,求最大公约数的方法: 求A,B两数的最大公约数,递归求解,递归边界是B==0. gcd(a,b)=gcd(b,a%b) 我们进一步来求Ax+By=Gcd(A,B)的解. 尝试套用欧几里得求法 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
- 浅谈Java的throw与throws
转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...
- 浅谈SQL注入风险 - 一个Login拿下Server
前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...
- 浅谈WebService的版本兼容性设计
在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...
- 浅谈angular2+ionic2
浅谈angular2+ionic2 前言: 不要用angular的语法去写angular2,有人说二者就像Java和JavaScript的区别. 1. 项目所用:angular2+ionic2 ...
- iOS开发之浅谈MVVM的架构设计与团队协作
今天写这篇博客是想达到抛砖引玉的作用,想与大家交流一下思想,相互学习,博文中有不足之处还望大家批评指正.本篇博客的内容沿袭以往博客的风格,也是以干货为主,偶尔扯扯咸蛋(哈哈~不好好工作又开始发表博客啦 ...
- Linux特殊符号浅谈
Linux特殊字符浅谈 我们经常跟键盘上面那些特殊符号比如(?.!.~...)打交道,其实在Linux有其独特的含义,大致可以分为三类:Linux特殊符号.通配符.正则表达式. Linux特殊符号又可 ...
随机推荐
- 6.Docker网络
什么是 Docker网络 docker 不启动,默认网络情况 ens33 lo virbr0 在 CentOS7 的安装过程中如果有选择相关虚拟化的的服务安装系统后,启动网卡时会发现有一个以网桥连接的 ...
- Spring Boot 2.7.0发布,2.5停止维护,节奏太快了吧
这几天是Spring版本日,很多Spring工件都发布了新版本, Spring Framework 6.0.0 发布了第 4 个里程碑版本,此版本包含所有针对 5.3.20 的修复补丁,以及特定于 6 ...
- 安装Iftop到CentOS(YUM)
iftop是Linux系统下实时流量监控工具. 运行环境 系统版本:CentOS Linux release 7.6.1810 (Core) 软件版本:Python 硬件要求:无 安装过程 1.安装i ...
- shellcode编写
shellcode编写 shellcode是一段用于利用软件漏洞而执行的代码,通常使用机器语言编写,其目的往往是让攻击者获得目标机器的命令行shell而得名,其他有类似功能的代码也可以称为shellc ...
- 微信小程序避坑指南——input框里的图标在部分安卓机里无法点击的问题
问题场景: 下图中的显隐密码和验证码均为包裹在 input标签 中的 image标签, 但在开发测试中发现点击不了这俩个image标签,因为是被input标签的padding挡住了. 解决方法:将im ...
- 第06组Alpha冲刺(3/6)
目录 1.1 基本情况 1.2 冲刺概况汇报 1.郝雷明 2.鲍凌函 3.曾丽莉 4. 曹兰英 5. 方梓涵 6.董翔云 7.杜筱 8.黄少丹 9. 詹鑫冰 10.吴沅静 1.3 冲刺成果展示 1.1 ...
- 钉钉登录二维码嵌套在vue页面中
转自 https://www.csdn.net/tags/OtDacg3sMjQ2NTgtYmxvZwO0O0OO0O0O.html 钉钉登录二维码嵌套在vue页面中 2021-09-04 14:42 ...
- nvm安装与使用及乱码问题
前端开发工作中经常负责多个项目(新项目.多年的老项目及团队合作项目),经常会遇到npm install安装依赖包或者启动本地服务时依赖报错的情况,大多数是因为NodeJS和npm与依赖之间版本的问题, ...
- 【Linux系列】-Linux中用shell脚本从SFTP服务器下载文件
银企直连的电子回单接口中,部分银行使用sftp服务作为文件服务器,通常只保留N天的文件内容,企业未在规定的时间范围下载文件之后就不能下载了,那么有一个自动下载的脚本岂不美滋滋. Linux安装SFTP ...
- 测试平台系列(97) 完善执行case部分
大家好~我是米洛! 我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的教程,希望大家多多支持. 欢迎关注我的公众号米洛的测开日记,获取最新文章教程! 回顾 上一节我们讨论了怎么结束一个 ...