(数据科学学习手札149)用matplotlib轻松绘制漂亮的表格
本文示例代码已上传至我的
Github仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
大家好我是费老师,matplotlib作为数据可视化的强力工具,可以帮助我们自由创作各式各样的数据可视化作品,其中matplotlib.pyplot.table模块就专门用于绘制表格,但是由于参数复杂,且默认样式单一简陋,想基于它绘制出美观的表格需要花费不少功夫。
而我最近发现的一个基于matplotlib的第三方库plottable,用它来生成数据表格图既简单又美观,今天的文章中费老师我就来带大家学习它的常用方法~

2 基于plottable绘制漂亮的表格
使用pip install plottable完成安装后,我们先从一个简单的例子了解其基础的使用方式:
2.1 从简单例子出发
plottable的基础使用很简单,在已有数据框的基础上,直接调用plottable中的Table模块即可:

渲染出的表格图如下:

2.2 plottable的常用方法
了解到plottable的基础用法后,接下来我们来学习如何添加一些常用参数来对表格进行美化:
2.2.1 控制表格奇数偶数行底色
通过在Table()中设置参数odd_row_color和even_row_color,我们可以传入matplotlib中合法的色彩值进行表格奇数偶数行底色的设置:

2.2.2 控制表头单元格与数据单元格样式
通过Table()中的参数col_label_cell_kw、cell_kw,我们可以分别对表头区域单元格、数据区域单元格进行样式设置,接受matplotlib.patches.Rectangle全部可用参数,例如:

2.2.3 调节单元格文字样式
通过参数textprops我们可以对全部单元格的文字样式进行控制:

2.2.4 配置行分割线
通过bool型参数col_label_divider、footer_divider、row_dividers可以分别设置是否为表头、表格尾部、数据行绘制分割线:

而通过参数col_label_divider_kw、footer_divider_kw、row_divider_kw则可以分别控制各个部分分割线的样式,支持plt.plot中全部参数:

2.2.5 基于ColDef的列样式细粒度设置
plottable中最强大的地方在于,其通过配置由plottable.ColDef对象列表构成的column_definitions参数,可细粒度地对每一列进行自由的样式定义,其中每个ColDef()对象通过参数name与列名进行对应,常见的用法有:
- 分别设置不同字段的宽度比例系数
以每列的默认宽度为1,可以分别为不同列调整宽度:

- 分别设置不同字段的文本对齐方式
每个ColDef对象都可设置textprops参数,基于此可以实现为不同字段定义水平对齐方式:

- 分别为不同字段设置数值色彩映射
通过为ColDef设置参数cmap、text_cmap,我们可以分别基于对应列的数值,对其单元格底色或字体颜色进行值映射:

- 为字段创建分组展示
通过为若干个ColDef设置相同的group参数,我们可以为具有相同group参数的字段添加分组标识:

- 为指定字段绘制列边框
通过为ColDef设置参数border,我们可以决定如何绘制不同字段的列边框:

除了本文所述的部分功能外,plottable还有很多高级进阶的使用方法,譬如单元格图片渲染、自定义单元格绘制内容等,下面的几个例子就是基于plottable创作的:
https://plottable.readthedocs.io/en/latest/example_notebooks/wwc_example.html

https://plottable.readthedocs.io/en/latest/example_notebooks/bohndesliga_table.html

https://plottable.readthedocs.io/en/latest/example_notebooks/plot_example.html

https://plottable.readthedocs.io/en/latest/example_notebooks/heatmap.html

更多用法请移步官网https://plottable.readthedocs.io/。
以上就是本文的全部内容,欢迎在评论区与我进行讨论~
(数据科学学习手札149)用matplotlib轻松绘制漂亮的表格的更多相关文章
- (数据科学学习手札98)纯Python绘制满满艺术感的山脊地图
本文示例代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 下面的这幅图可能很多读者朋友们都看到过,这 ...
- (数据科学学习手札133)利用geopandas绘制拓扑着色地图
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在绘制某些地图时,为了凸显出每个独立的 ...
- (数据科学学习手札90)Python+Kepler.gl轻松制作时间轮播图
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl作为一款强大的开源地理信 ...
- (数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...
- (数据科学学习手札40)tensorflow实现LSTM时间序列预测
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...
- (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线
1 简介 在数据分析任务中,从原始数据读入,到最后分析结果出炉,中间绝大部分时间都是在对数据进行一步又一步的加工规整,以流水线(pipeline)的方式完成此过程更有利于梳理分析脉络,也更有利于查错改 ...
- (数据科学学习手札75)基于geopandas的空间数据分析——坐标参考系篇
本文对应代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一篇文章中我们对geopandas中的数据结 ...
- (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...
- (数据科学学习手札49)Scala中的模式匹配
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...
- (数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...
随机推荐
- jmeter执行报错:java.lang.UnsupportedClassVersionError解决办法
做个记录. 问题记录: jmeter版本:5.4.1 本地Java版本:1.8.0_151 执行jmeter,报错: 2022-10-14 12:06:27,372 ERROR o.a.j.JMete ...
- created与mounted执行顺序(关于微任务与宏任务)
1.ps:只要你只使用created或者mounted中的一个不就好了吗[dog].这样只要在第一个异步任务代码跳出前,嵌套第二个任务函数就好了 最后面的两个链接一个是微任务与宏任务的通俗例子,一个是 ...
- 【题解】CF356A Knight Tournament
题面传送门 本蒟蒻想练习一下并查集,所以是找并查集标签来这里的.写题解加深理解. 解决思路 自然,看到区间修改之类很容易想到线段树,但本蒟蒻线段树会写挂,所以这里就讲比较简单的并查集思路. 并查集的核 ...
- Excel表格复制填写
=if(A1<>"",A1,"") #A1可以为任意表格单元
- [排序算法] 归并排序 (C++)
归并排序解释 归并排序 Merge Sort 是典型的分治法的应用,其算法步骤完全遵循分治模式. 分治法思想 分治法 思想: 将原问题分解为几个规模较小但又保持原问题性质的子问题,递归求解这些子问题, ...
- Windows 服务器中使用 mysqldump 命令导出数据,解决中文乱码问题
起因 环境:阿里云服务器(windows server).mysql(8.0.11) mysql> select @@version; +-----------+ | @@version | + ...
- 编译器优化丨Cache优化
摘要:本文重点介绍几种通过优化Cache使用提高程序性能的方法. 本文分享自华为云社区<编译器优化那些事儿(7):Cache优化>,作者:毕昇小助手. 引言 软件开发人员往往期望计算机硬件 ...
- 1.1 大数据简介-hadoop-最全最完整的保姆级的java大数据学习资料
目录 1 hadoop-最全最完整的保姆级的java大数据学习资料 1.1 大数据简介 1.1.1 大数据的定义 1.1.2 大数据的特点 1.1.3 大数据的应用场景 1.1.4 大数据的发展趋势及 ...
- Java基础知识篇【gitee】
https://snailclimb.gitee.io/javaguide 一.Java基本功 Java一次编译,字节码通过JVM,处处运行jsp会转化为servlet,也要由jdk编译OracleJ ...
- CTF中RSA常见类型解法
Python脚本 #十六进制转ASCII编码 import binascii print(binascii.unhexlify(hex(m)[2:])) #rsa import gmpy2 phi = ...