[CF1481D] AB Graph(构造)
题解
给一个
n
\tt n
n 个点的完全有向图,
(
u
,
v
)
\tt(u,v)
(u,v) 或者
(
v
,
u
)
\tt(v,u)
(v,u) 都有一条边,前提是
u
≠
v
\tt u\not=v
u=v 。
每条边的边权是字符 a 或字符 b ,会给你一个
n
×
n
\tt n\times n
n×n 的二维字符表
G
\tt G
G 来表示它们,若
i
≠
j
\tt i\not=j
i=j ,则
G
i
,
j
=
a
\tt G_{i,j}=a
Gi,j=a 或
G
i
,
j
=
b
\tt G_{i,j}=b
Gi,j=b ,否则
G
i
,
j
=
∗
\tt G_{i,j}=*
Gi,j=∗ ,表示该边不存在。
现在问你,从任意一个起点开始,走
m
\tt m
m 步(可以经过重复的点或边)形成的字符串,是否可以为回文串?如果有,输出行走方案。
T
≤
500
\tt T\leq 500
T≤500 组数据,
∑
n
≤
1000
,
∑
m
≤
1
0
5
\tt \sum n\leq1000,\sum m\leq10^5
∑n≤1000,∑m≤105 。
题解
一眼看过去,貌似是道
D
P
\tt DP
DP ?以前做过路径为回文串的题。
但是这题没必要,因为评分只有2000,明显可以直接分类讨论。
对于
m
\tt m
m 是奇数的情况,我们可以任意找两个点,反复跳,容易发现结果定是回文串。也就是说,这种情况下一定有解。
如果
m
\tt m
m 是偶数,这样讨论:
- 若存在一对点
u
,
v
\tt u,v
u,v ,满足
G
u
,
v
=
G
v
,
u
\tt G_{u,v}=G_{v,u}
Gu,v=Gv,u ,那么直接在这两个点之间跳。这明显是无懈可击的方案。
- 否则,整个图满足对于任意两个不相等的点
u
,
v
\tt u,v
u,v ,
G
u
,
v
,
G
v
,
u
\tt G_{u,v},G_{v,u}
Gu,v,Gv,u 其中一个是
a,另一个是b。然后,我们找这么三个点x
,
y
,
z
\tt x,y,z
x,y,z (
x
≠
y
,
y
≠
z
\tt x\not=y,y\not=z
x=y,y=z),满足
G
x
,
y
=
G
y
,
z
\tt G_{x,y}=G_{y,z}
Gx,y=Gy,z,令这两条边为最中心的两条边,那么整个回文串为
.
.
.
G
x
,
y
G
y
,
x
G
x
,
y
(
m
i
d
d
l
e
)
G
y
,
z
G
z
,
y
G
y
,
z
.
.
.
\tt ...G_{x,y}G_{y,x}~G_{x,y}(middle)G_{y,z}~G_{z,y}G_{y,z}...
...Gx,yGy,x Gx,y(middle)Gy,z Gz,yGy,z... ,左右两边都是交替出现的
ab,且保证回文。 - 如果这三个点也找不到,那么说明不论这一步是什么字符,下一步一定是不一样的字符。这样是形不成偶数长度的回文串的,此时无解。
复杂度
Θ
(
m
)
\tt\Theta(m)
Θ(m) 。
CODE
#include<set>
#include<queue>
#include<bitset>
#include<cmath>
#include<ctime>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
#define INF 0x3f3f3f3f
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
char g[MAXN][MAXN];
int as[MAXN];
int main() {
int T = read();
while(T --) {
n = read();m = read();
for(int i = 1;i <= n;i ++) {
scanf("%s",g[i] + 1);
}
if(m & 1) {
printf("YES\n");
for(int i = 1;i <= m+1;i ++) printf("%d ",2-(i&1));ENDL;
}
else {
s = o = 0;
for(int i = 1;i <= n;i ++) {
for(int j = 1;j <= n;j ++) {
if(g[i][j] == g[j][i] && i != j) {s = i;o = j;break;}
}
}
if(s && o) {
printf("YES\n");
for(int i = 1;i <= m+1;i ++) printf("%d ",(i&1) ? s:o);ENDL;
}
else {
int cen = 0;
s = o = 0;
for(int i = 1;i <= n;i ++) {
int pa = 0,pb = 0;
for(int j = 1;j <= n;j ++) {
if(g[j][i] == 'a') pa = j;
if(g[j][i] == 'b') pb = j;
}
for(int j = 1;j <= n;j ++) {
if(g[i][j] == 'a' && pa) {s = pa;o = j;}
if(g[i][j] == 'b' && pb) {s = pb;o = j;}
}
if(s && o) {cen = i;break;}
}
if(cen) {
printf("YES\n");
m ++;
int md = (m+1)/2;
as[md] = cen;
as[md-1] = s;
as[md+1] = o;
for(int i = md-2;i > 0;i --) {
if(as[i+1] == s) as[i] = cen;
else as[i] = s;
}
for(int i = md+2;i <= m;i ++) {
if(as[i-1] == o) as[i] = cen;
else as[i] = o;
}
for(int i = 1;i <= m;i ++) printf("%d ",as[i]);ENDL;
}
else printf("NO\n");
}
}
}
return 0;
}
[CF1481D] AB Graph(构造)的更多相关文章
- HDU 4725 The Shortest Path in Nya Graph [构造 + 最短路]
HDU - 4725 The Shortest Path in Nya Graph http://acm.hdu.edu.cn/showproblem.php?pid=4725 This is a v ...
- CodeForces 916C Jamie and Interesting Graph (构造)
题意:给定两个数,表示一个图的点数和边数,让你构造出一个图满足 1- n 的最短路是素数,并且最小生成树也是素数. 析:首先 1 - n 的最短路,非常好解决,直接 1 连 n 就好了,但是素数尽量 ...
- CodeForces 404C Restore Graph (构造)
题意:让人构造一个图,满足每个结点边的数目不超过 k,然后给出每个结点到某个结点的最短距离. 析:很容易看出来如果可能的话,树是一定满足条件的,只要从头开始构造这棵树就好,中途超了int...找了好久 ...
- 2017icpc乌鲁木齐网络赛Colored Graph (构造)
题目 https://nanti.jisuanke.com/t/16958 题意 给定一个n(n<=500)个点的无向图,给每条边黑白染色,输出同色三角形最少的个数和对应的方案 分析 首先考虑给 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- HDU4467:Graph(点的度数分块)
传送门 题意 给出一张n个点m条边的无向图,点的颜色为0/1,每次有两种操作: 1.Asksum x y,查询两点颜色为x和y的边的权值之和 2.Change x,将x颜色取反 分析 最直接的做法是每 ...
- CF1481X Codeforces Round #699
C Fence Painting(构造) 有用的刷子贪心刷,没用的刷子填在后续的有用/已存在的位置(用个栈记一下就行) D AB Graph(图上构造) 把边当做三种类型,aa bb ab m为奇数时 ...
- Leetcode#115 Distinct Subsequences
原题地址 转化为求非重路径数问题,用动态规划求解,这种方法还挺常见的 举个例子,S="aabb",T="ab".构造如下地图("."表示空位 ...
- Android内存泄漏分析及调试
尊重原创作者,转载请注明出处: http://blog.csdn.net/gemmem/article/details/13017999 此文承接我的另一篇文章:Android进程的内存管理分析 首先 ...
随机推荐
- JavaScript中的??和?.和??=操作符
JS中两种不常使用但挺实用的操作符:??和?. 一起来了解并学会使用它们吧: 空值合并操作符:?? 只有当操作符左侧为null或undefined时才会返回操作符右侧的值,否则返回左侧的值. eg: ...
- flink窗口分类
窗口分类 按照驱动类型分类 窗口本身是截取有界数据的一种方式,所以窗口一个非常重要的信息就是"怎样截取数据".换句话说,就是以什么标准来开发和结束数据的截取. 按照驱动类型分类主要 ...
- 透过Redis源码探究字符串的实现
转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com 本文使用的Redis 5.0源码 概述 最近在通过 Redis 学 C 语言,不得不说, ...
- QT5 QSS QML界面美化视频课程系列 QT原理 项目实战 C++1X STL
QT5 QSS QML界面美化视频课程系列 QT原理 项目实战 C++1X STL 课程1 C语言程序设计高级实用速成课程 基础+进阶+自学 课程2 C语言程序设计Windows GDI图形绘 ...
- 实现领域驱动设计 - 使用ABP框架 - 创建实体
用例演示 - 创建实体 本节将演示一些示例用例并讨论可选场景. 创建实体 从实体/聚合根类创建对象是实体生命周期的第一步.聚合/聚合根规则和最佳实践部分建议为Entity类创建一个主构造函数,以保证创 ...
- Linux 安装Apche服务
用yum 进行在线安装apche服务 yum install -y httpd 我这边是centos7 需要开启一下端口: 1 firewall-cmd --zone=public --add-por ...
- 0016:单源最短路径(dijkstra算法)
题目链接:https://www.luogu.com.cn/problem/P4779 题目描述:给定一个 n 个点,m 条有向边的带非负权图,计算从 s 出发,到每个点的距离. 这道题就是一个单源最 ...
- springboot 中如何正确在异步线程中使用request
起因: 有后端同事反馈在异步线程中获取了request中的参数,然后下一个请求是get请求的话,发现会偶尔出现参数丢失的问题. 示例代码: @GetMapping("/getParams&q ...
- 沁恒CH32V103C8T6(二): Linux RISC-V编译和烧录环境配置
目录 沁恒CH32V103C8T6(一): 核心板焊接和Windows开发环境配置 沁恒CH32V103C8T6(二): Linux RISC-V编译和烧录环境配置 硬件准备 CH32V103 开发板 ...
- Solution -「构造」专练
记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数 ...