gcd(数论)
题目描述
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对?
输入
一个整数
1<=N<=1000000
输出
一个整数
样例输入
4
样例输出
4
提示
【样例解释】
(2,2),(2,4),(3,3),(4,2)
其实是做过的,我们知道,欧拉函数就是找在n以内与n互质的数,那么我们这样思考,设有一个数是x是在y范围以内与y互质的,就一定满足:
gcd(y , x) = 1
那么,如果我们同时将n乘上一个素数,如3,则就一定有:
gcd( 3*y , 3*x ) = 3
那么只要保证y*3不大于n,那么y及其y以内的数都可以满足咯,所以最后的答案就是:
其中pn为n以内质数个数,prime存的是质数。
为什么要乘2呢,因为反过来也是一种情况
为什么要加1呢?因为(n/prime[i] , n/prime[i])也是一种情况,但是只能算一遍,且欧拉函数算的是小于n/prime[i]的
可以用前缀和
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int n ;
#define ll long long
const int MAXN = 1e7 + 3;
int prime[MAXN] , pn;
ll phi[MAXN];
bool vis[MAXN];
void pr(){
for( int i = 2 ; i <= n ; i ++ ){
if( !vis[i] ){
prime[++pn] = i;
phi[i] = i - 1;
}
for( int j = 1 ; j <= pn && 1ll * i * prime[j] <= n ; j ++ ){
vis[i*prime[j]] = 1;
if( i % prime[j] == 0 ){
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
phi[i*prime[j]] = phi[i] * ( prime[j] - 1 );
}
}
for( int i = 2 ; i <= n ; i ++ )
phi[i] = phi[i] + phi[i-1];
}
int main(){
scanf( "%d" , &n );
pr();
ll ans = 0;
for( int i = 1; i <= pn ; i ++ ){
ans = ans + phi[n/prime[i]] * 2 + 1;
}
printf( "%lld" , ans );
return 0;
}
---------------------
作者:BIT_jzx
原文:https://blog.csdn.net/weixin_43823476/article/details/89077146
gcd(数论)的更多相关文章
- Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论
Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...
- [Swust OJ 1125]--又见GCD(数论,素数表存贮因子)
题目链接:http://acm.swust.edu.cn/problem/1125/ Time limit(ms): 1000 Memory limit(kb): 65535 Descriptio ...
- BZOJ 4305: 数列的GCD( 数论 )
对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...
- hdu 4983 Goffi and GCD(数论)
题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...
- 【bzoj2818】: Gcd 数论-欧拉函数
[bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...
- UVA 10951 - Polynomial GCD(数论)
UVA 10951 - Polynomial GCD 题目链接 题意:给定两个多项式,求多项式的gcd,要求首项次数为1,多项式中的运算都%n,而且n为素数. 思路:和gcd基本一样,仅仅只是传入的是 ...
- bzoj 2818 GCD 数论 欧拉函数
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...
- luoguP1029 最大公约数和最小公倍数问题 [gcd][数论]
题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...
- BZOJ 2820: YY的GCD | 数论
题目: 题解: http://hzwer.com/6142.html #include<cstdio> #include<algorithm> #define N 100000 ...
随机推荐
- JZOJ 5409 Fantasy & NOI 2010 超级钢琴 题解
其实早在 2020-12-26 的比赛我们就做过 5409. Fantasy 这可是紫题啊 题目大意 给你一个序列,求长度在 \([L,R]\) 区间内的 \(k\) 个连续子序列的最大和 题解 如此 ...
- Java并发3
轻量级锁:如果一个有多个线程访问,但多线程访问的时间是错开的,没有竞争,那么可以使用轻量级锁来优化: monitor:重量级锁: 正常我们使用synchronized时,没有竞争则是轻量级锁,当遇到竞 ...
- SRE,了解一下?35+岁程序员新选择
摘要:随着云业务的发展,今后会有越来越多的工程师深入到SRE领域. 本文分享自华为云社区<浅谈SRE角色认知>,作者: SRE确定性运维. 一.什么是SRE? SRE(Site Relia ...
- 腾讯视频的qlv格式转换为mp4格式
1.点击设置->下载设置->缓存管理 下的文件目录复制; 2复制在 我的电脑路径栏目中 找到缓存目录 文件夹vodcache; 3.打开视频对应文件; 4.打开cmd命令窗口 5.跳转 到 ...
- BUUCTF-秘密文件
秘密文件 根据提示得知是属于文件被下载了,查看了下流量包直接过滤ftp包 这里看到有个RAR包存在,应该是隐写了 使用foremost分离即可 得到压缩包存在密码 默认四位纯数字爆破即可 flag{d ...
- 实现领域驱动设计 - 使用ABP框架 - 创建实体
用例演示 - 创建实体 本节将演示一些示例用例并讨论可选场景. 创建实体 从实体/聚合根类创建对象是实体生命周期的第一步.聚合/聚合根规则和最佳实践部分建议为Entity类创建一个主构造函数,以保证创 ...
- 《The Tail At Scale》论文详解
简介 用户体验与软件的流畅程度是呈正相关的,所以对于软件服务提供方来说,保持服务耗时在用户能接受的范围内就是一件必要的事情.但是在大型分布式系统上保持一个稳定的耗时又是一个很大的挑战,这篇文章解析的是 ...
- bat-Office激活命令
激活命令 cd C:\Program Files\Microsoft Office\Office16 //然后目录对的话,该目录下面应该有个 OSPP.VBS cscript ospp.vbs /ds ...
- Linux下修改RabbitMQ密码
1,首先查看用户列表 rabbitmqctl list_users 2,修改对应用户密码 其中username 为用户名, newpasswd为新密码 rabbitmqctl change_passw ...
- dotnet 控制台 使用 Microsoft.Maui.Graphics 配合 Skia 进行绘图入门
本文将告诉大家如何在 dotnet 的控制台模式下,采用 MAUI 自绘库 Microsoft.Maui.Graphics 进行绘图,设置 Microsoft.Maui.Graphics 底层调用 M ...