POJ2155 树状数组
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 26650 | Accepted: 9825 |
Description
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1
Source
//可以画个图看一下,每次更新(x1,y1),(x2+1,y1),(x1,y2+1),(x2+1,y2+1)这4个点的值
//时所有的点都不会被影响。求每个点的sum(并不真实),奇数是1,偶数是0.
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=;
int A[maxn][maxn];
int cas,n,m,x1,x2,y1,y2;
int Lowbit(int x){
return x&(-x);
}
void Add(int x,int y,int val)
{
for(int i=x;i<=;i+=Lowbit(i)){
for(int j=y;j<=;j+=Lowbit(j)){
A[i][j]+=val;
}
}
}
int Query(int x,int y)
{
int s=;
for(int i=x;i>;i-=Lowbit(i)){
for(int j=y;j>;j-=Lowbit(j)){
s+=A[i][j];
}
}
return s;
}
int main()
{
scanf("%d",&cas);
while(cas--){
scanf("%d%d",&n,&m);
memset(A,,sizeof(A));
char ch[];
while(m--){
scanf("%s",ch);
if(ch[]=='C'){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
Add(x1,y1,);
Add(x1,y2+,);
Add(x2+,y2+,);
Add(x2+,y1,);
}
else{
scanf("%d%d",&x1,&y1);
int ans=Query(x1,y1);
//cout<<ans<<endl;
printf("%d\n",ans&);
}
}
printf("\n");
}
return ;
}
POJ2155 树状数组的更多相关文章
- poj2155 树状数组 Matrix
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 14826 Accepted: 5583 Descripti ...
- POJ-2155 Matrix---二维树状数组+区域更新单点查询
题目链接: https://vjudge.net/problem/POJ-2155 题目大意: 给一个n*n的01矩阵,然后有两种操作(m次)C x1 y1 x2 y2是把这个小矩形内所有数字异或一遍 ...
- [poj2155]Matrix(二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 25004 Accepted: 9261 Descripti ...
- [POJ2155]Matrix(二维树状数组)
题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...
- 【POJ2155】【二维树状数组】Matrix
Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...
- poj2155二维树状数组
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...
- poj2155一个二维树状数组
...
- POJ2155(二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17226 Accepted: 6461 Descripti ...
- poj2155二维树状数组区间更新
垃圾poj又交不上题了,也不知道自己写的对不对 /* 给定一个矩阵,初始化为0:两种操作 第一种把一块子矩阵里的值翻转:0->1,1->0 第二种询问某个单元的值 直接累计单元格被覆盖的次 ...
随机推荐
- 实现Bidirectional LSTM Classifier----深度学习RNN
双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增 ...
- Some good articles
https://alligator.io/vuejs/introduction-render-functions/ https://alligator.io/vuejs/vue-jwt-pattern ...
- Fafa and the Gates(模拟)
Two neighboring kingdoms decided to build a wall between them with some gates to enable the citizens ...
- python学习笔记02:运行python程序
1.启动cmd命令行,输入python后回车,运行python解释器: 输入python代码后回车: print('Hello World')
- arcgis api for javascript 各个版本的SDK下载
1.首先,进入下载网站,需要登录才能下载.下载链接 2.选择需要下载的版本,进行下载.
- 微信支付java
直接上代码: 1.支付配置PayCommonUtil import com.legendshop.payment.tenpay.util.MD5Util; import com.legendshop. ...
- Android Camera多屏幕适配解决预览照片拉伸
通常,拍照预览页面的照片拉伸主要与下面两个因素有关: 1. Surfaceview的大小 2. Camera中的Preview的大小 如下图: 图中preview显示的是手机支 ...
- change object keys & UpperCase & LowerCase
change object keys & UpperCase & LowerCase .toLocaleUpperCase(); && .toLocaleLowerCa ...
- KMP算法字符串查找子串
题目: 经典的KMP算法 分析: 和KMP算法对应的是BF算法,其中BF算法时间复杂度,最坏情况下可以达到O(n*m),而KMP算法的时间复杂度是O(n + m),所以,KMP算法效率高很多. 但是K ...
- 第一章 Spring 概述
Spring框架的生态,已经成了JavaWeb开发的事实标准 以IOC与AOP为基础,提供了一整套JavaWeb的开发解决方案 在需要引入功能前,先看看有没有Spring的实现,或者其他框架,看看能否 ...