UniquePaths,UniquePaths2,路径问题。动态规划。
UniquePaths:给定m*n矩阵,从(0,0)到(m-1,n-1)路径条数。只能向下向右走。
算法分析:这和爬楼梯问题很像,到(m,n)的路径数是到(m-1,n)和(m,n-1)路径和。第一行,第一列,为边界条件。
public class UniquePaths
{
//动态规划,非递归
public int uniquePaths(int m, int n)
{
int[][] a = new int[m][n];
for(int i = 0; i < m; i ++)//初始条件,第一行第一列
{
a[i][0] = 1;
}
for(int i = 0; i < n; i ++)
{
a[0][i] = 1;
}
for(int i = 1; i < m; i ++)
{
for(int j = 1; j < n; j ++)
{
a[i][j] = a[i-1][j]+a[i][j-1];//递推公式
}
}
return a[m-1][n-1];
} //动态规划递归
public int uniquePaths2(int m, int n)
{
if(m == 1 || n == 1) return 1;
else
{
return uniquePaths2(m-1, n)+uniquePaths2(m, n-1);
}
}
}
UniquePaths2:在上一题基础上,矩阵为1的点是障碍。求路径数。
public class UniquePaths2
{
public int uniquePathsWithObstacles(int[][] obstacleGrid)
{
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1)//特例
{
return 0;
}
for(int i = 0; i < m; i ++)//边界条件,第一行第一列,如果碰到1,则后面所有都为0
{
if(obstacleGrid[i][0] == 1)
{
for(int j = i; j < m; j ++)
{
obstacleGrid[j][0] = 0;
}
break;
}
else
{
obstacleGrid[i][0] = 1;
}
}
for(int i = 1; i < n; i ++)
{
if(obstacleGrid[0][i] == 1)
{
for(int j = i; j < n; j ++)
{
obstacleGrid[0][j] = 0;
}
break;
}
else
{
obstacleGrid[0][i] = 1;
}
} for(int i = 1; i < m; i ++)
{
for(int j = 1; j < n; j ++)
{
if(obstacleGrid[i][j] == 1)
{
obstacleGrid[i][j] = 0;
}
else
{
obstacleGrid[i][j] = obstacleGrid[i-1][j] + obstacleGrid[i][j-1];
}
}
}
return obstacleGrid[m-1][n-1];
}
}
UniquePaths,UniquePaths2,路径问题。动态规划。的更多相关文章
- 【BZOJ2306】幸福路径(动态规划,倍增)
[BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...
- Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)
Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...
- 不同路径II --动态规划
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在考虑网 ...
- Leetcode题目62.不同路径(动态规划-中等)
题目描述: 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). ...
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- [LeetCode] 63. 不同路径 II ☆☆☆(动态规划)
描述 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向右移动一步.机器人试图达到网格的右下角(在下图中标记为“Finish”). 现在 ...
- [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[ [1,3,1], [1,5,1 ...
- Leetcode 不同路径系列
Leetcode不同路径系列题解笔记 62. 不同路径 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" ). 机器人每次只能向下或者向右移动一 ...
- 62. Unique Paths不同路径
网址:https://leetcode.com/problems/unique-paths/ 第一思路是动态规划 通过观察,每一个格子的路线数等于相邻的左方格子的路线数加上上方格子的路线数 于是我们就 ...
- 南阳理工ACM Skiing问题
描述 Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道载一个区域中最长底 ...
随机推荐
- ITMS-SERVICES://方式安装IPA在IOS 7.1中的变化
转:https://laoyur.com/?p=414 iOS7.1中,通过itms-services://方式安装ipa已经发生了改变,.plist文件必须是https://的,.ipa文件的链接则 ...
- sqlalchemy(二)高级用法 2
转自:https://www.cnblogs.com/coder2012/p/4746941.html 外键以及relationship 首先创建数据库,在这里一个user对应多个address,因此 ...
- 转!!java泛型
介绍java泛型的一篇文章,通俗易懂! 原文地址:http://www.cnblogs.com/lwbqqyumidi/p/3837629.html 一. 泛型概念的提出(为什么需要泛型)? 首先,我 ...
- java URL 利用网址api 查出手机号归属地
手机号码归属地查询api接口 1.淘宝网API地址: http://tcc.taobao.com/cc/json/mobile_tel_segment.htm?tel=手机号码参数:tel:手机号码返 ...
- 替换DOM元素 parent.replaceChild(new, old)
p.replaceChild(nodeNext, p.children[j]); p.replaceChild(nodePrev, p.children[j + 1]);
- Touch事件分发机制
原文:http://www.cnblogs.com/linjzong/p/4191891.html Touch事件分发中只有两个主角:ViewGroup和View.Activity的Touch事件事实 ...
- 判断元素的16中方法expected_conditions
from selenium.webdriver.support import expected_conditons as EC 1.title_is:判断当前页面的title是否完全等于预期字符串,返 ...
- likely(x)与unlikely(x) __builtin_expect
本文讲的likely()和unlikely()两个宏,在linux内核代码和一些应用中可常见到它们的身影.实质上,这两个宏是关于GCC编译器内置宏__builtin_expect的使用. 顾名思义,l ...
- boost shared_ptr weak_ptr
文档: http://www.boost.org/doc/libs/1_57_0/libs/smart_ptr/shared_ptr.htm shared_ptr构造有个原型 template< ...
- begoo——路由设置
路由本质是URL与要为该URL调用的视图函数之间的映射表,其实就是你定义的使用那个URL调用那段代码的关系对应表. 首先看一下最简单的路由: package routers import ( &quo ...