Pretrained models for Pytorch (Work in progress)
The goal of this repo is:
- to help to reproduce research papers results (transfer learning setups for instance),
- to access pretrained ConvNets with a unique interface/API inspired by torchvision.
News:
- 04/06/2018: PolyNet and PNASNet-5-Large thanks to Alex Parinov
- 16/04/2018: SE-ResNet* and SE-ResNeXt* thanks to Alex Parinov
- 09/04/2018: SENet154 thanks to Alex Parinov
- 22/03/2018: CaffeResNet101 (good for localization with FasterRCNN)
- 21/03/2018: NASNet Mobile thanks to Veronika Yurchuk and Anastasiia
- 25/01/2018: DualPathNetworks thanks to Ross Wightman, Xception thanks to T Standley, improved TransformImage API
- 13/01/2018:
pip install pretrainedmodels,pretrainedmodels.model_names,pretrainedmodels.pretrained_settings - 12/01/2018:
python setup.py install - 08/12/2017: update data url (/!\
git pullis needed) - 30/11/2017: improve API (
model.features(input),model.logits(features),model.forward(input),model.last_linear) - 16/11/2017: nasnet-a-large pretrained model ported by T. Durand and R. Cadene
- 22/07/2017: torchvision pretrained models
- 22/07/2017: momentum in inceptionv4 and inceptionresnetv2 to 0.1
- 17/07/2017: model.input_range attribut
- 17/07/2017: BNInception pretrained on Imagenet
Summary
- Installation
- Quick examples
- Few use cases
- Evaluation on ImageNet
- Documentation
- Available models
- AlexNet
- BNInception
- CaffeResNet101
- DenseNet121
- DenseNet161
- DenseNet169
- DenseNet201
- DenseNet201
- DualPathNet68
- DualPathNet92
- DualPathNet98
- DualPathNet107
- DualPathNet113
- FBResNet152
- InceptionResNetV2
- InceptionV3
- InceptionV4
- NASNet-A-Large
- NASNet-A-Mobile
- PNASNet-5-Large
- PolyNet
- ResNeXt101_32x4d
- ResNeXt101_64x4d
- ResNet101
- ResNet152
- ResNet18
- ResNet34
- ResNet50
- SENet154
- SE-ResNet50
- SE-ResNet101
- SE-ResNet152
- SE-ResNeXt50_32x4d
- SE-ResNeXt101_32x4d
- SqueezeNet1_0
- SqueezeNet1_1
- VGG11
- VGG13
- VGG16
- VGG19
- VGG11_BN
- VGG13_BN
- VGG16_BN
- VGG19_BN
- Xception
- Model API
- Available models
- Reproducing porting
Installation
Install from pip
pip install pretrainedmodels
Install from repo
git clone https://github.com/Cadene/pretrained-models.pytorch.gitcd pretrained-models.pytorchpython setup.py install
Quick examples
- To import
pretrainedmodels:
import pretrainedmodels
- To print the available pretrained models:
print(pretrainedmodels.model_names)
> ['fbresnet152', 'bninception', 'resnext101_32x4d', 'resnext101_64x4d', 'inceptionv4', 'inceptionresnetv2', 'alexnet', 'densenet121', 'densenet169', 'densenet201', 'densenet161', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'inceptionv3', 'squeezenet1_0', 'squeezenet1_1', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', 'nasnetalarge', 'nasnetamobile', 'cafferesnet101', 'senet154', 'se_resnet50', 'se_resnet101', 'se_resnet152', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'cafferesnet101', 'polynet', 'pnasnet5large']
- To print the available pretrained settings for a chosen model:
print(pretrainedmodels.pretrained_settings['nasnetalarge'])
> {'imagenet': {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth', 'input_space': 'RGB', 'input_size': [3, 331, 331], 'input_range': [0, 1], 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'num_classes': 1000}, 'imagenet+background': {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth', 'input_space': 'RGB', 'input_size': [3, 331, 331], 'input_range': [0, 1], 'mean': [0.5, 0.5, 0.5], 'std': [0.5, 0.5, 0.5], 'num_classes': 1001}}
- To load a pretrained models from imagenet:
model_name = 'nasnetalarge' # could be fbresnet152 or inceptionresnetv2
model = pretrainedmodels.__dict__[model_name](num_classes=1000, pretrained='imagenet')
model.eval()
Note: By default, models will be downloaded to your $HOME/.torch folder. You can modify this behavior using the $TORCH_MODEL_ZOO variable as follow: export TORCH_MODEL_ZOO="/local/pretrainedmodels
- To load an image and do a complete forward pass:
import torch
import pretrainedmodels.utils as utils
load_img = utils.LoadImage()
# transformations depending on the model
# rescale, center crop, normalize, and others (ex: ToBGR, ToRange255)
tf_img = utils.TransformImage(model)
path_img = 'data/cat.jpg'
input_img = load_img(path_img)
input_tensor = tf_img(input_img) # 3x400x225 -> 3x299x299 size may differ
input_tensor = input_tensor.unsqueeze(0) # 3x299x299 -> 1x3x299x299
input = torch.autograd.Variable(input_tensor,
requires_grad=False)
output_logits = model(input) # 1x1000
- To extract features (beware this API is not available for all networks):
output_features = model.features(input) # 1x14x14x2048 size may differ
output_logits = model.logits(output_features) # 1x1000
Few use cases
Compute imagenet logits
- See examples/imagenet_logits.py to compute logits of classes appearance over a single image with a pretrained model on imagenet.
$ python examples/imagenet_logits.py -h
> nasnetalarge, resnet152, inceptionresnetv2, inceptionv4, ...
$ python examples/imagenet_logits.py -a nasnetalarge --path_img data/cat.png
> 'nasnetalarge': data/cat.png' is a 'tiger cat'
Compute imagenet evaluation metrics
- See examples/imagenet_eval.py to evaluate pretrained models on imagenet valset.
$ python examples/imagenet_eval.py /local/common-data/imagenet_2012/images -a nasnetalarge -b 20 -e
> * Acc@1 92.693, Acc@5 96.13
Evaluation on imagenet
Accuracy on validation set (single model)
Results were obtained using (center cropped) images of the same size than during the training process.
| Model | Version | Acc@1 | Acc@5 |
|---|---|---|---|
| PNASNet-5-Large | Tensorflow | 82.858 | 96.182 |
| PNASNet-5-Large | Our porting | 82.736 | 95.992 |
| NASNet-A-Large | Tensorflow | 82.693 | 96.163 |
| NASNet-A-Large | Our porting | 82.566 | 96.086 |
| SENet154 | Caffe | 81.32 | 95.53 |
| SENet154 | Our porting | 81.304 | 95.498 |
| PolyNet | Caffe | 81.29 | 95.75 |
| PolyNet | Our porting | 81.002 | 95.624 |
| InceptionResNetV2 | Tensorflow | 80.4 | 95.3 |
| InceptionV4 | Tensorflow | 80.2 | 95.3 |
| SE-ResNeXt101_32x4d | Our porting | 80.236 | 95.028 |
| SE-ResNeXt101_32x4d | Caffe | 80.19 | 95.04 |
| InceptionResNetV2 | Our porting | 80.170 | 95.234 |
| InceptionV4 | Our porting | 80.062 | 94.926 |
| DualPathNet107_5k | Our porting | 79.746 | 94.684 |
| ResNeXt101_64x4d | Torch7 | 79.6 | 94.7 |
| DualPathNet131 | Our porting | 79.432 | 94.574 |
| DualPathNet92_5k | Our porting | 79.400 | 94.620 |
| DualPathNet98 | Our porting | 79.224 | 94.488 |
| SE-ResNeXt50_32x4d | Our porting | 79.076 | 94.434 |
| SE-ResNeXt50_32x4d | Caffe | 79.03 | 94.46 |
| Xception | Keras | 79.000 | 94.500 |
| ResNeXt101_64x4d | Our porting | 78.956 | 94.252 |
| Xception | Our porting | 78.888 | 94.292 |
| ResNeXt101_32x4d | Torch7 | 78.8 | 94.4 |
| SE-ResNet152 | Caffe | 78.66 | 94.46 |
| SE-ResNet152 | Our porting | 78.658 | 94.374 |
| ResNet152 | Pytorch | 78.428 | 94.110 |
| SE-ResNet101 | Our porting | 78.396 | 94.258 |
| SE-ResNet101 | Caffe | 78.25 | 94.28 |
| ResNeXt101_32x4d | Our porting | 78.188 | 93.886 |
| FBResNet152 | Torch7 | 77.84 | 93.84 |
| SE-ResNet50 | Caffe | 77.63 | 93.64 |
| SE-ResNet50 | Our porting | 77.636 | 93.752 |
| DenseNet161 | Pytorch | 77.560 | 93.798 |
| ResNet101 | Pytorch | 77.438 | 93.672 |
| FBResNet152 | Our porting | 77.386 | 93.594 |
| InceptionV3 | Pytorch | 77.294 | 93.454 |
| DenseNet201 | Pytorch | 77.152 | 93.548 |
| DualPathNet68b_5k | Our porting | 77.034 | 93.590 |
| CaffeResnet101 | Caffe | 76.400 | 92.900 |
| CaffeResnet101 | Our porting | 76.200 | 92.766 |
| DenseNet169 | Pytorch | 76.026 | 92.992 |
| ResNet50 | Pytorch | 76.002 | 92.980 |
| DualPathNet68 | Our porting | 75.868 | 92.774 |
| DenseNet121 | Pytorch | 74.646 | 92.136 |
| VGG19_BN | Pytorch | 74.266 | 92.066 |
| NASNet-A-Mobile | Tensorflow | 74.0 | 91.6 |
| NASNet-A-Mobile | Our porting | 74.080 | 91.740 |
| ResNet34 | Pytorch | 73.554 | 91.456 |
| BNInception | Our porting | 73.522 | 91.560 |
| VGG16_BN | Pytorch | 73.518 | 91.608 |
| VGG19 | Pytorch | 72.080 | 90.822 |
| VGG16 | Pytorch | 71.636 | 90.354 |
| VGG13_BN | Pytorch | 71.508 | 90.494 |
| VGG11_BN | Pytorch | 70.452 | 89.818 |
| ResNet18 | Pytorch | 70.142 | 89.274 |
| VGG13 | Pytorch | 69.662 | 89.264 |
| VGG11 | Pytorch | 68.970 | 88.746 |
| SqueezeNet1_1 | Pytorch | 58.250 | 80.800 |
| SqueezeNet1_0 | Pytorch | 58.108 | 80.428 |
| Alexnet | Pytorch | 56.432 | 79.194 |
Notes:
- the Pytorch version of ResNet152 is not a porting of the Torch7 but has been retrained by facebook.
- For the PolyNet evaluation each image was resized to 378x378 without preserving the aspect ratio and then the central 331×331 patch from the resulting image was used.
Beware, the accuracy reported here is not always representative of the transferable capacity of the network on other tasks and datasets. You must try them all!
Pretrained models for Pytorch (Work in progress)的更多相关文章
- Caffe2 载入预训练模型(Loading Pre-Trained Models)[7]
这一节我们主要讲述如何使用预训练模型.Ipython notebook链接在这里. 模型下载 你可以去Model Zoo下载预训练好的模型,或者使用Caffe2的models.download模块获取 ...
- (转载)PyTorch代码规范最佳实践和样式指南
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...
- pytorch中tensorboardX的用法
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xce ...
- (转)Awesome PyTorch List
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...
- Ubuntu 16.04上源码编译和安装pytorch教程,并编写C++ Demo CMakeLists.txt | tutorial to compile and use pytorch on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/54e7a3d8/,欢迎阅读最新内容! tutorial to compile and use pytorch on ubuntu ...
- (转) The Incredible PyTorch
转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...
- Run Your Tensorflow Deep Learning Models on Google AI
People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow& ...
- FaceNet pre-trained模型以及FaceNet源码使用方法和讲解
Pre-trained models Model name LFW accuracy Training dataset Architecture 20180408-102900 0.9905 CASI ...
- 【翻译】OpenVINO Pre-Trained 预训练模型介绍
OpenVINO 系列软件包预训练模型介绍 本文翻译自 Intel OpenVINO 的 "Overview of OpenVINO Toolkit Pre-Trained Models& ...
随机推荐
- Python fileinput模块详解
Python的fileinput模块可以快速对一个或多个文件进行循环遍历. import fileinput for line in fileinput.input(): process(line) ...
- [BZOJ2055] 80人环游世世界
Description 想必大家都看过成龙大哥的<80天环游世界>,里面的紧张刺激的打斗场面一定给你留下了深刻的印象.现在就有这么 一个80人的团伙,也想来一次环游世界. 他们 ...
- BZOJ2458:[BJOI2011]最小三角形——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2458 Description Xaviera现在遇到了一个有趣的问题. 平面上有N个点,Xavier ...
- AOJ.850 电缆公司的烦恼 (二分+枚举)
AOJ.850 电缆公司的烦恼 (二分+枚举) 题意分析 从[1,average]二分枚举长度即可,由于保留2位小数,可以将数据扩大10^2倍后后枚举,输出时除100即可. 代码总览 #include ...
- JavaScript倒计时脚本
JavaScript倒计时在Web中用得非常广泛,比如常见的团购啊.还有什么值得期待的事情,都可以用到倒计时.现在举了四个例子,比如时间长的倒计时,小时倒计时,最简的倒计时,还有秒表等等,应该可以满足 ...
- HDU2121:Ice_cream’s world II (虚根+有向图最小生成树)
Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- OopenCV复习及函数深入理解(轮廓查询及绘图)
核心函数:(后面标明号的,下面有解析) int cvFindContours(Iplimage* img,//这是输入函数,必须是8bit,单通道的图像---1 CvMemStorage* stora ...
- ACM3018欧拉回路
欧拉回路 欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉路是否存在 ...
- 用HTML5 File API 实现截图粘贴上传、拖拽上传
<!DOCTYPE html><html><head> <title>test chrome paste image</title> < ...
- [技巧篇]02.关于MyBatis存取图片到MySQL数据Blob字段