题面

UOJ

Sol

玄学,不会势能分析

所以

维护区间最大最小值

把开根变成区间减法

如果最大值开根后的变化量和最小值的相等,就直接打个减法\(lazy\)

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
# define File(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)
using namespace std;
typedef long long ll;
const int _(1e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m;
struct Segment{
ll mx, mn, tag, sum;
} T[_ << 2]; IL void Build(RG int x, RG int l, RG int r){
if(l == r){
T[x].mn = T[x].mx = T[x].sum = Input();
return;
}
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
Build(ls, l, mid), Build(rs, mid + 1, r);
T[x].mn = min(T[ls].mn, T[rs].mn);
T[x].mx = max(T[ls].mx, T[rs].mx);
T[x].sum = T[ls].sum + T[rs].sum;
} IL void Adjust(RG int x, RG ll v, RG int l, RG int r){
T[x].tag += v, T[x].mx += v, T[x].mn += v, T[x].sum += 1LL * (r - l + 1) * v;
} IL void Pushdown(RG int x, RG int l, RG int mid, RG int r){
if(T[x].tag == 0) return;
Adjust(x << 1, T[x].tag, l, mid);
Adjust(x << 1 | 1, T[x].tag, mid + 1, r);
T[x].tag = 0;
} IL void Modify2(RG int x, RG int l, RG int r, RG int L, RG int R, RG ll v){
if(L <= l && R >= r){
Adjust(x, v, l, r);
return;
}
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
Pushdown(x, l, mid, r);
if(L <= mid) Modify2(ls, l, mid, L, R, v);
if(R > mid) Modify2(rs, mid + 1, r, L, R, v);
T[x].mn = min(T[ls].mn, T[rs].mn);
T[x].mx = max(T[ls].mx, T[rs].mx);
T[x].sum = T[ls].sum + T[rs].sum;
} IL void Modify1(RG int x, RG int l, RG int r, RG int L, RG int R){
RG ll v1 = sqrt(T[x].mn), v2 = sqrt(T[x].mx);
v1 -= T[x].mn, v2 -= T[x].mx;
if(v1 == v2){
Modify2(x, l, r, L, R, v1);
return;
}
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
Pushdown(x, l, mid, r);
if(L <= mid) Modify1(ls, l, mid, L, R);
if(R > mid) Modify1(rs, mid + 1, r, L, R);
T[x].mn = min(T[ls].mn, T[rs].mn);
T[x].mx = max(T[ls].mx, T[rs].mx);
T[x].sum = T[ls].sum + T[rs].sum;
} IL ll Query(RG int x, RG int l, RG int r, RG int L, RG int R){
if(L <= l && R >= r) return T[x].sum;
RG int mid = (l + r) >> 1, ls = x << 1, rs = x << 1 | 1;
RG ll ans = 0;
Pushdown(x, l, mid, r);
if(L <= mid) ans = Query(ls, l, mid, L, R);
if(R > mid) ans += Query(rs, mid + 1, r, L, R);
T[x].mn = min(T[ls].mn, T[rs].mn);
T[x].mx = max(T[ls].mx, T[rs].mx);
T[x].sum = T[ls].sum + T[rs].sum;
return ans;
} int main(RG int argc, RG char *argv[]){
n = Input(), m = Input(), Build(1, 1, n);
while(m--){
RG int op = Input(), l = Input(), r = Input(), v;
if(op == 1) v = Input(), Modify2(1, 1, n, l, r, v);
else if(op == 2) Modify1(1, 1, n, l, r);
else printf("%lld\n", Query(1, 1, n, l, r));
}
return 0;
}

UOJ#288:基础数据结构练习题的更多相关文章

  1. 【线段树】uoj#228. 基础数据结构练习题

    get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...

  2. uoj #228. 基础数据结构练习题 线段树

    #228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...

  3. uoj#228 基础数据结构练习题

    题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...

  4. uoj#228. 基础数据结构练习题(线段树区间开方)

    题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...

  5. uoj#228. 基础数据结构练习题(线段树)

    传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...

  6. UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题

    题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...

  7. UOJ #228 - 基础数据结构练习题(势能线段树+复杂度分析)

    题面传送门 神仙题. 乍一看和经典题 花神游历各国有一点像,只不过多了一个区间加操作.不过多了这个区间加操作就无法再像花神游历各国那样暴力开根直到最小值为 \(1\) 为止的做法了,稍微感性理解一下即 ...

  8. 【UOJ#228】基础数据结构练习题 线段树

    #228. 基础数据结构练习题 题目链接:http://uoj.ac/problem/228 Solution 这题由于有区间+操作,所以和花神还是不一样的. 花神那道题,我们可以考虑每个数最多开根几 ...

  9. 【UOJ228】基础数据结构练习题(线段树)

    [UOJ228]基础数据结构练习题(线段树) 题面 UOJ 题解 我们来看看怎么开根? 如果区间所有值都相等怎么办? 显然可以直接开根 如果\(max-sqrt(max)=min-sqrt(min)\ ...

随机推荐

  1. leetcode-747-Largest Number At Least Twice of Others(求vector的最大值和次大值)

    题目描述: In a given integer array nums, there is always exactly one largest element. Find whether the l ...

  2. 2016级算法第三次上机-F.ModricWang的导弹防御系统

    936 ModricWang的导弹防御系统 思路 题意即为:给出一个长度为n的序列,求出其最长不降子序列. 考虑比较平凡的DP做法: 令\(nums[i]\) 表示这个序列,\(f[x]\) 表示以第 ...

  3. js 时间戳的转化,js 日期转成标准字符串,日期格式的相互转化

    1.时间的获取 var myDate = new Date(); myDate.getYear(); //获取当前年份(2位) myDate.getFullYear(); //获取完整的年份(4位,1 ...

  4. Angular material mat-icon 资源参考_File

    ul,li>ol { margin-bottom: 0 } dt { font-weight: 700 } dd { margin: 0 1.5em 1.5em } img { height: ...

  5. 红米手机3S 3X简单卡刷开发版获得ROOT权限的方法

    小米的机器不同手机型号一般小米论坛都提供两个不同的系统,即分别是稳定版和开发版,稳定版没有提供root权限管理,开发版中就支持了root权限,很多情况下我们需要使用的一些功能强大的APP,都需要在ro ...

  6. unity 渲染第一步

    unity 不是将宇宙投影到水晶球里,而是:将整个 view frustum 投影成 一个 cube .------ <unity 渲染箴言> 观察一下,整个 view frustum 以 ...

  7. 在ionic3+angular4项目中添加自定义图标

    在阿里图标库下载自己所需要的图标解压为一下目录 把iconfont.xx文件全部放到src/assets/fonts/文件夹下,可以全部替换里面的文件,但是要把之前iconfont.css文件下的文件 ...

  8. mac 下安装 mit-scheme

    这两天心血来潮想看一下 SICP 和 Lisp,准备先看 SICP ,之后再学 Haskell, 深入学习一下函数式编程. 所以得装个 mit-scheme 做练习. 尝试了 3 种方式, 前 2 种 ...

  9. Android创建定时和周期任务

    问题:应用需要按时执行某个操作,例如定时更新UI. 解决方案:使用Handler提供的定时操作功能.通过Handler,可以在指定的时间或是指定的延时后执行操作. 下面看一个在TextView中显示当 ...

  10. 更好的理解MVC

    mvc除了将数据层和逻辑层分离外,还有更好的优化了代码结构 m只和c交互,v也只和c交互,m与v的交互需要通过c,一共只用考虑4条路 如果不是这样的话,m v c需要考虑和每个人交互,那么就是要考虑 ...