最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml

在Introduction部分NG较为系统的概括了Machine learning的一些基本概念,也让我接触了一些新的名词,这些名词在后续课程中会频繁出现:

Machine Learning Supervised Learning Unsupervised Learning Regression Problem Classification Problem Octave
机器学习 有监督学习 无监督学习 回归问题 分类问题 Octave

What is Machine Learning

Definition: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.


Example of Machine Learning

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam.

T: Classifying emails as spam or not spam; (目标)

E: Watching you label emails as spam or not spam; (算法 + 数据)

P: The number (or fraction) of emails correctly classified as spam/not spam. (评价方法->损失函数)


Supervised Learning

Definition: The goal is, given a labeled training data, to learn a function h so that h(x) is a “good” predictor for the corresponding value of y. A pair (x, y) is called a training example, x denoting “input” variables, also called features, and y denoting “output” or target variable that we are trying to predict.

When the target variable that we are trying to predict is continuous, we call the learning problem a regression problem. When the target can take on only a small number of discrete values, the learning problem is called a classification problem.

A.Example of Regression Problem

Suppose we have a dataset giving the living areas and prices of 11 houses from Portland, Oregon:

Living area (feet2) Price (1000$s)
450 100
600 140
620 210
... ...

We can plot this data:

So regression problem is to find a function h to fit these points.

B.Example of Classification Problem

Suppose we have a dataset giving the tumor size, patient age and malignant or benign, we plot these data as follows:

So classification problem is to find a function h to sperate these points.

PS: 回归就是找出那个可以拟合样本的函数(平面,空间,...),分类就是找到那个可以把不同类别的样本分开的函数(平面,空间,...);在特定问题下,比如逻辑回归问题,分类问题就可以被视作回归问题来解决。


Unsupervised Learning

In the clustering problem, we are given a training set {x(1), . . . , x(m)}, and want to group the data into a few cohesive “clusters”. Here, no labels y(i) are given. So, this is an unsupervised learning problem.

PS: 无监督学习很多时候都暗指聚类算法,聚类算法又分硬聚类(K-means, 分层聚类,基于密度的等等)和软聚类(EM算法)。

(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

随机推荐

  1. Python的异常处理机制 -- (转)

    当你的程序中出现异常情况时就需要异常处理.比如当你打开一个不存在的文件时.当你的程序中有一些无效的语句时,Python会提示你有错误存在. 下面是一个拼写错误的例子,print写成了Print.Pyt ...

  2. poj 1298 The Hardest Problem Ever

    题目链接:http://poj.org/problem?id=1298 题目大意:按照所给的顺序要求将输入的字符串进行排列. #include <iostream> #include &l ...

  3. ew做socks5代理

    这个工具和之前讲过的xxoo类似.链接:https://www.cnblogs.com/nul1/p/8883271.html https://zhuanlan.zhihu.com/p/3282215 ...

  4. vs 2015 插件 supercharger 破解方式

    亲测有效:效果如图 方法如下: 1.打开Supercharger的options; 2.点击Pricing & Registration 3.复制 license  然后再按Paste &am ...

  5. java===java基础学习(3)---数据类型转换,运算符级别,枚举类型

    数据类型转换: 有的时候,程序需要将数据类型,比如 int + float ,结果是float, 这里的int就被转换为float类型,属于合法转换. Java中的合法转换如下图: 红色表示无信息丢失 ...

  6. HDU 6109 数据分割 并查集,SET

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6109 题意:中文题面 解法:每次都贪心地尝试将尽量多的条件放进当前这组,遇到第一个与已有条件冲突时,就 ...

  7. Mysql安装发生「Access denied for user ‘root’@’localhost’ (using password: NO)」错误

    参考:http://www.aipacommander.com/entry/2014/05/26/152247 mysql_secure_installation 依赖重置密码

  8. 如何在datepicker滚动完毕后触发事件去获得日期

    本来以为这件事情应该需要借助datepicker的委托来处理的,但是并没有找到此空间的委托. 其实最最简单的做法就是在IB中将次控件connect到一个Action上. 经过测试,当datepicke ...

  9. tinyhttpd ------ C 语言实现最简单的 HTTP 服务器

    工作流程: 1>服务器启动,在指定端口或随机选取端口绑定httpd服务. 2>收到一个http请求时(其实就是listen端口accept的时候),派生一个线程运行accept_reque ...

  10. java 默认内存大小

    https://www.cnblogs.com/jack204/archive/2012/07/02/2572932.html -Xmx   Java Heap最大值,默认值为物理内存的1/4,最佳设 ...