最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml

在Introduction部分NG较为系统的概括了Machine learning的一些基本概念,也让我接触了一些新的名词,这些名词在后续课程中会频繁出现:

Machine Learning Supervised Learning Unsupervised Learning Regression Problem Classification Problem Octave
机器学习 有监督学习 无监督学习 回归问题 分类问题 Octave

What is Machine Learning

Definition: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.


Example of Machine Learning

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam.

T: Classifying emails as spam or not spam; (目标)

E: Watching you label emails as spam or not spam; (算法 + 数据)

P: The number (or fraction) of emails correctly classified as spam/not spam. (评价方法->损失函数)


Supervised Learning

Definition: The goal is, given a labeled training data, to learn a function h so that h(x) is a “good” predictor for the corresponding value of y. A pair (x, y) is called a training example, x denoting “input” variables, also called features, and y denoting “output” or target variable that we are trying to predict.

When the target variable that we are trying to predict is continuous, we call the learning problem a regression problem. When the target can take on only a small number of discrete values, the learning problem is called a classification problem.

A.Example of Regression Problem

Suppose we have a dataset giving the living areas and prices of 11 houses from Portland, Oregon:

Living area (feet2) Price (1000$s)
450 100
600 140
620 210
... ...

We can plot this data:

So regression problem is to find a function h to fit these points.

B.Example of Classification Problem

Suppose we have a dataset giving the tumor size, patient age and malignant or benign, we plot these data as follows:

So classification problem is to find a function h to sperate these points.

PS: 回归就是找出那个可以拟合样本的函数(平面,空间,...),分类就是找到那个可以把不同类别的样本分开的函数(平面,空间,...);在特定问题下,比如逻辑回归问题,分类问题就可以被视作回归问题来解决。


Unsupervised Learning

In the clustering problem, we are given a training set {x(1), . . . , x(m)}, and want to group the data into a few cohesive “clusters”. Here, no labels y(i) are given. So, this is an unsupervised learning problem.

PS: 无监督学习很多时候都暗指聚类算法,聚类算法又分硬聚类(K-means, 分层聚类,基于密度的等等)和软聚类(EM算法)。

(原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 6) Advice for Applying Machine Learning & Machine Learning System Design

    (1) Advice for applying machine learning Deciding what to try next 现在我们已学习了线性回归.逻辑回归.神经网络等机器学习算法,接下来 ...

随机推荐

  1. 数字签名算法rsa

    数字签名算法消息传递模型 由消息发送方构建密钥对,这里由甲方完成. 由消息发送方公布公钥至消息接收方,这里由甲方将公钥公布给乙方. 注意如加密算法区别,这里甲方使用私钥对数据签名,数据与签名形成一则消 ...

  2. 使用GDB命令行调试器调试C/C++程序【转】

    转自:https://linux.cn/article-4302-1.html 编译自:http://xmodulo.com/gdb-command-line-debugger.html作者: Adr ...

  3. Linux 入门记录:八、Linux 文件系统

    一.文件系统 操作系统通过文件系统管理文件及数据,磁盘或分区需要创建文件系统之后,才能被操作系统所用,创建文件系统的过程又称之为格式化.没有文件系统的设备又称之为裸设备(raw),某些环境会需要裸设备 ...

  4. python基础===zmail,收发邮件的模块

    项目地址: GitHub:https://github.com/ZYunH/zmail  介绍: https://mp.weixin.qq.com/s?__biz=MzAxMjUyNDQ5OA==&a ...

  5. zip函数的应用

    #!/usr/bin/env python # encoding: utf-8 from itertools import zip_longest # ➍ # zip并行从输入的各个可迭代对象中获取元 ...

  6. Sql中把datetime转换成字符串(CONVERT)(转)

    一.回顾一下CONVERT()的语法格式: CONVERT (<data_ type>[ length ], <expression> [, style]) 二.这里注重说明一 ...

  7. 设置Eclipse/MyEclipse中编辑界面点击任何文件后Package Explorer导航自动定位该文件

    原文:http://www.myexception.cn/eclipse/425836.html 设置步骤: 导航Package Explorer的右上角有一个黄色双向箭头图标,鼠标移动到上面提示“L ...

  8. MAC 'readonly' option is set (add ! to override)错误解决

    该错误为当前用户没有权限对文件作修改 输入 :w !sudo tee %

  9. ORACLE中函数MONTHS_BETWEEN的使用

    格式:MONTHS_BETWEEN(DATE1,DATE2) MONTHS_BETWEEN函数返回两个日期之间的月份数. SQL> ', 'yyyymmdd')) as months from ...

  10. python 函数的几个属性 func_name, func_code等

    直接见代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/07/25 10:14 def add(x=0, y=1): & ...