线段树+哈希【CF580E】Kefa and Watch

Description

\(n\)个数的字符串,\(m + k\)个操作

1 l r k把\(l - r\)赋值为\(k\)

2 l r d询问\(l - r\)是否有长度为\(d\)的循环节

\(n \leq 10^5, m + k \leq 10^5, d \leq 10\)

Input

第一行为三个整数\(n,m,k\)

第二行为一个\(n\)个数的字符串。

接下来\(m+k\)行每行对应一种操作。

Output

对于每一个\(2\)操作,如果存在,输出一行\(YES\),否则输出\(NO\)

线段树维护哈希

写起来爽,调起来更爽

我们首先预处理出\(po\)数组记录\(base^i\)(这个要用来修改及查询的。)

还要预处理出来\(val[i][j]\)代表长度为\(j\)的全部为数字\(i\)的字符串的哈希值。

然后每次区间合并的时候.

\[len=tr[rs].r-tr[rs].l+1 \\
tr[o].va=(tr[ls].va\times po[len]%\ mod +tr[rs].va) %\ mod
\]

这个应该不是很难理解吧。(就类似于你\(hash\)匹配的做法。)

修改时候,我们直接赋值\(tr[o].va=val[k][len]\)即可。

需要注意的有两点:

  1. \(lazy\)标记初值要为\(1\),因为会存在赋值为\(0\)的情况
  2. 查询操作中,当前区间分别在左右两侧的时候\(tr[ls].va \times po[r-mid]\)!!

因此直接码代码就好了

还有一个神仙结论是做题的根据。

如果询问为\((l,r,d)\),则只需要判断\((l+d,r)\)和\((l,r-d)\)即可。

证明的话,我不太会.但是这是正确的。

如果这题卡单\(hash\)的话可以写双\(hash\)。稍作修改即可。不多\(BB\)了.

代码

#include<cstdio>
#include<algorithm>
#include<iostream>
#define lo long long
#define base 31
#define mod 20020303
#define R register using namespace std; const int gz=1e5+8; inline void in(R int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} int n,m,K,po[gz]={1},val[10][gz]; char s[gz]; struct wc
{
int l,r,tg;
lo va;
}tr[gz<<2]; inline void pre()
{
for(R int i=1;i<gz;i++)
po[i]=po[i-1]*base%mod;
for(R int i=0;i<10;i++)
for(R int j=1;j<gz;j++)
val[i][j]=(val[i][j-1]*base%mod+i)%mod;
} #define ls o<<1
#define rs o<<1|1 inline void up(R int o)
{
tr[o].va=(tr[ls].va*po[tr[rs].r-tr[rs].l+1]%mod+tr[rs].va%mod)%mod;
} void build(R int o,R int l,R int r)
{
tr[o].l=l,tr[o].r=r;tr[o].tg=-1;
if(l==r)
{
tr[o].va=s[l]-'0';
return;
}
R int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
} inline void down(R int o)
{
if(tr[o].tg==-1)return;
R int k=tr[o].tg;
tr[ls].va=val[k][tr[ls].r-tr[ls].l+1];
tr[rs].va=val[k][tr[rs].r-tr[rs].l+1];
tr[ls].tg=tr[rs].tg=k;
tr[o].tg=-1;
} void change(R int o,R int l,R int r,R int k)
{
if(tr[o].l==l and tr[o].r==r)
{
tr[o].tg=k;
tr[o].va=val[k][tr[o].r-tr[o].l+1];
return ;
}
down(o);
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid)change(ls,l,r,k);
else if(l>mid)change(rs,l,r,k);
else change(ls,l,mid,k),change(rs,mid+1,r,k);
up(o);
} lo query(R int o,R int l,R int r)
{
if(tr[o].l==l and tr[o].r==r)return tr[o].va;
down(o);
R int mid=(tr[o].l+tr[o].r)>>1;
if(r<=mid)return query(ls,l,r);
else if(l>mid) return query(rs,l,r);
else
return ((query(ls,l,mid)%mod)*po[r-mid]%mod+query(rs,mid+1,r)%mod)%mod;//注意这里!!
} int main()
{
pre();
in(n),in(m),in(K);
R int tt=m+K;
scanf("%s",s+1);
build(1,1,n);
for(R int opt,l,r,k;tt;tt--)
{
in(opt),in(l),in(r),in(k);
switch(opt)
{
case 1:change(1,l,r,k);break;
case 2:
{
if(r-l+1==k)
{
puts("YES");
continue;
}
puts(query(1,l,r-k)==query(1,l+k,r) ? "YES":"NO");
break;
}
}
}
}

线段树+哈希【CF580E】Kefa and Watch的更多相关文章

  1. 【线段树哈希】「Balkan OI 2016」Haker

    1A海星 题目大意 给你一个长度为 $n$ ,由小写字母构成的字符串 $S$ 和 $Q$ 个操作,每个操作是以下 3 种之一: 1 x y k :询问当前字符串从位置 $x$ 到 $y$ 的子串与从位 ...

  2. cf580E. Kefa and Watch(线段树维护字符串hash)

    题意 $n$个数的序列,$m + k$种操作 1.$l , r, k$把$l - r$赋值为$k$ 2.$l, r, d$询问$l - r$是否有长度为$d$的循环节 Sol 首先有个神仙结论:若询问 ...

  3. Codeforces Round #321 (Div. 2) E. Kefa and Watch 线段树hash

    E. Kefa and Watch Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/580/prob ...

  4. 51Nod1553 周期串查询 字符串 哈希 线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1553.html 题目传送门 - 51Nod1553 题意 有一个串只包含数字字符.串的长度为n,下标 ...

  5. 线段树 + 字符串Hash - Codeforces 580E Kefa and Watch

    Kefa and Watch Problem's Link Mean: 给你一个长度为n的字符串s,有两种操作: 1 L R C : 把s[l,r]全部变为c; 2 L R d : 询问s[l,r]是 ...

  6. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

  7. CF213E Two Permutations 线段树维护哈希值

    当初竟然看成子串了$qwq$,不过老师的$ppt$也错了$qwq$ 由于子序列一定是的排列,所以考虑插入$1$到$m$到$n-m+1$到$n$; 如何判断呢?可以用哈希$qwq$: 我们用线段树维护哈 ...

  8. HDU3973 线段树 + 字符哈希

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3973 , 线段树 + 字符哈希,好题. 又学了一种新的哈希方法,hhhh~ 解法: 想法是用P进制的数 ...

  9. 【URAL 1989】 Subpalindromes(线段树维护哈希)

    Description You have a string and queries of two types: replace i'th character of the string by char ...

随机推荐

  1. zoj 2006 Glass Beads

    Glass Beadshttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1006 Time Limit: 2 Seconds     ...

  2. 鸽巢排序Pigeonhole sort

    原理类似桶排序,同样需要一个很大的鸽巢[桶排序里管这个叫桶,名字无所谓了] 鸽巢其实就是数组啦,数组的索引位置就表示值,该索引位置的值表示出现次数,如果全部为1次或0次那就是桶排序 例如 var pi ...

  3. 「6月雅礼集训 2017 Day4」寻找天哥

    [题目大意] 给出$n$个三维向量,设当前向量长度为$L$,每次沿着向量等概率走$[0,L]$个长度.一个球每秒半径增加1个长度,直到覆盖位置,每秒耗能为球体积,求总耗能的期望. 设最后半径为R,那么 ...

  4. 【LibreOJ】#541. 「LibreOJ NOIP Round #1」七曜圣贤

    [题意]一开始车上有编号为0~a的红茶,过程中出现的红茶编号仅有[0,b),有三种操作: 1.买进编号未在车上出现过的红茶. 2.丢掉车上指定编号的红茶. 3.将最早丢出去的红茶捡回来. 每次操作后求 ...

  5. POJ 2991 Crane (线段树)

    题目链接 Description ACM has bought a new crane (crane -- jeřáb) . The crane consists of n segments of v ...

  6. POJ 3276 Face The Right Way (尺取法)

    题目链接 Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are f ...

  7. springcloud基于ribbon的canary路由方案

    思路 根据eureka的metadata进行自定义元数据,然后使用ribbon对该元数据进行过滤和匹配,选择server. 实现 这里使用header来传递路由信息,改造ribbon-discover ...

  8. perl 在win下输出中文乱码问题

    use utf8; my $name = '你好'; binmode(STDOUT, ":encoding(gbk)"); print $name,"\n"; ...

  9. python中的Queue模块

    queue介绍 queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue.python3直接queue即可 在python中,多个线程之间的数据 ...

  10. ms17010利用失败解决一则

    没有反弹得到session并且提示如下: [-] 10.0.131.2:445 - Service failed to start, ERROR_CODE: 216 换了一个payload set p ...