[APIO2017]商旅
这题卡我精度,调了一晚上才调对,因为没有想到图还可以不连通
其实可以预处理出好多东西,距离($dis(u,v)$),买卖物品(从$u$到$v$买卖物品的最大利润,例($max{S_{u,i}-B_{v,i}}$),然后其实可以发现就是一个十分普通普遍的分数规划式子,就每次二分$k$,然后建边,$spfa$判正环就行
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<climits>
#include<queue>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
int n,m,k;
int dis[MAXN][MAXN],b[MAXN][MAXN],s[MAXN][MAXN],st[MAXN][MAXN],l,r,maxn,D[MAXN][MAXN],num[MAXN],Dis[MAXN],vis[MAXN];
queue<int> que;
bool check(int P){
while(!que.empty()) que.pop();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) D[i][j]=st[i][j]-dis[i][j]*P;
memset(Dis,,sizeof(Dis));
memset(num,,sizeof(num));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) num[i]=vis[i]=,que.push(i);
while(!que.empty()){
int xx=que.front();que.pop();vis[xx]=;
for(int i=;i<=n;i++){
int d=D[xx][i];
if(dis[xx][i]>INT_MAX) continue;
if(Dis[xx]+d>=Dis[i]){
Dis[i]=d+Dis[xx];
num[i]=num[xx]+;
if(num[i]>n+) return ;
if(!vis[i]){
vis[i]=;
que.push(i);
} }
}
}return ;
}
signed main(){
memset(dis,/,sizeof(dis));
n=read(),m=read(),k=read();
for(int i=;i<=n;i++)
for(int j=;j<=k;j++) b[i][j]=read(),s[i][j]=read();
for(int i=;i<=k;i++){
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
if(b[x][i]!=-&&s[y][i]!=-) {
st[x][y]=max(st[x][y],s[y][i]-b[x][i]),r=max(r,st[x][y]);
}
}
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
dis[u][v]=min(dis[u][v],w);
}
for(int ss=;ss<=n;ss++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][ss]+dis[ss][j]);
while(l<=r){
int mid=l+r>>;
if(check(mid)) maxn=max(maxn,mid),l=mid+;
else r=mid-;
}
printf("%lld\n",maxn);
}
[APIO2017]商旅的更多相关文章
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
		BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ... 
- [BZOJ4898] [Apio2017]商旅
		[BZOJ4898] [Apio2017]商旅 传送门 试题分析 考虑两个点之间的路径,显然如果交易的话肯定选\(S_{t,i}-B_{s,i}\)最大的. 那么我们可以先用\(Cost\)把两个点的 ... 
- 【算法】01分数规划 ---  HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
		01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ... 
- 【BZOJ4898】[Apio2017]商旅 分数规划+SPFA
		[BZOJ4898][Apio2017]商旅 Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个 ... 
- [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案
		题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ... 
- bzoj 4898: [Apio2017]商旅
		Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所 深深吸引,决定定居于此,做一个商人.科巴有个集市,集市用从1到N的整数编号 ... 
- [APIO2017]商旅(floyd+分数规划+SPFA)
		题解:首先肯定要跑最短路,而n<=100,所以可以用floyd,然后根据比值,很容易想到二分答案,然后再SPFA跑一遍负环,就能求出解了. #include<bits/stdc++.h&g ... 
- BZOJ4898/5367 Apio2017商旅(分数规划+floyd)
		如果要在某点买入某物品并在另一点卖出,肯定是走其间最短路径.于是预处理任意两点间的收益和最短路径,连完边二分答案判负环即可,可以全程floyd.注意inf大小. #include<iostrea ... 
- [APIO2017]商旅   0/1分数规划
		---题面--- 题解: upd: 在洛谷上被Hack了...思路应该是对的,代码就别看了 感觉有个地方还是非常妙的,就是因为在x买东西,在y卖出,就相当于直接从x走向了y,因为经过中间的城市反正也不 ... 
- BZOJ4898 & BZOJ5367 & 洛谷3778:[APIO2017]商旅——题解
		https://www.lydsy.com/JudgeOnline/problem.php?id=4898 https://www.lydsy.com/JudgeOnline/problem.php? ... 
随机推荐
- Python常见的脚本汇总
			1.冒泡排序 lis = [56,12,1,8,354,10,100,34,56,7,23,456,234,-58] def sortport(): for i in range(len(lis)-1 ... 
- Web自动化测试环境搭建1(基于firefox火狐浏览器)
			自动化测试是时代趋势,因此很多测试人员开始研究自动化测试,web自动化测试化测试并不难,但是很多人都是被挡在了环境搭建这一步,后面学习激情全无,这里,韬哥手把手教大家搭建火狐浏览器下的自动化测试环境( ... 
- [CF19B]Checkout Assistant
			题目描述 Bob 来到一家现购自运商店,将 n 件商品放入了他的手推车,然后到收银台 付款.每件商品由它的价格 pi 和收银员扫描它的时间 ti 秒定义.当收银员正在扫 描某件商品时,Bob 可以从他 ... 
- 并行程序模拟(Concurrency Simulator, ACM/ICPC World Finals 1991,Uva210)
			任务介绍 你的任务是模拟n个程序的并行运算.(按照输入编号为1~n)的并行执行. 代码实现 #define LOCAL #include<bits/stdc++.h> using name ... 
- Fluent Python: Classmethod vs Staticmethod
			Fluent Python一书9.4节比较了 Classmethod 和 Staticmethod 两个装饰器的区别: 给出的结论是一个非常有用(Classmethod), 一个不太有用(Static ... 
- POJ 2104 K-th Number(划分树)
			Description You are working for Macrohard company in data structures department. After failing your ... 
- nodejs笔记--与Redis的交互篇(六)
			原文地址:http://www.cnblogs.com/zhongweiv/p/node_redis.html 安装前准备 win64: Install python: http://www.pyth ... 
- windows远程连接失败问题排查思路
			一般情况下,对WIN7的远程连接只需要5步即可完成远程连接的设置: 1).用户是否设置了密码 2).计算机属性-允许远程登录 3).设置计算机永不睡眠 4).关闭防火墙或者设置入站规则 5).排查Re ... 
- mysql 启动报错
			之前用我这个机器做mysql的测试来,今天启动准备搭建一套线上的主从,结果起不来了... 错误日志: ;InnoDB: End of page dump 170807 11:37:02 InnoDB: ... 
- Python—文件
			def fileCopy(src, dst, srcEncoding, dstEncoding): with open(src, 'r', encoding=srcEncoding) as srcfp ... 
