[APIO2017]商旅
这题卡我精度,调了一晚上才调对,因为没有想到图还可以不连通
其实可以预处理出好多东西,距离($dis(u,v)$),买卖物品(从$u$到$v$买卖物品的最大利润,例($max{S_{u,i}-B_{v,i}}$),然后其实可以发现就是一个十分普通普遍的分数规划式子,就每次二分$k$,然后建边,$spfa$判正环就行
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<climits>
#include<queue>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int MAXN=;
int n,m,k;
int dis[MAXN][MAXN],b[MAXN][MAXN],s[MAXN][MAXN],st[MAXN][MAXN],l,r,maxn,D[MAXN][MAXN],num[MAXN],Dis[MAXN],vis[MAXN];
queue<int> que;
bool check(int P){
while(!que.empty()) que.pop();
for(int i=;i<=n;i++)
for(int j=;j<=n;j++) D[i][j]=st[i][j]-dis[i][j]*P;
memset(Dis,,sizeof(Dis));
memset(num,,sizeof(num));
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++) num[i]=vis[i]=,que.push(i);
while(!que.empty()){
int xx=que.front();que.pop();vis[xx]=;
for(int i=;i<=n;i++){
int d=D[xx][i];
if(dis[xx][i]>INT_MAX) continue;
if(Dis[xx]+d>=Dis[i]){
Dis[i]=d+Dis[xx];
num[i]=num[xx]+;
if(num[i]>n+) return ;
if(!vis[i]){
vis[i]=;
que.push(i);
} }
}
}return ;
}
signed main(){
memset(dis,/,sizeof(dis));
n=read(),m=read(),k=read();
for(int i=;i<=n;i++)
for(int j=;j<=k;j++) b[i][j]=read(),s[i][j]=read();
for(int i=;i<=k;i++){
for(int x=;x<=n;x++)
for(int y=;y<=n;y++)
if(b[x][i]!=-&&s[y][i]!=-) {
st[x][y]=max(st[x][y],s[y][i]-b[x][i]),r=max(r,st[x][y]);
}
}
for(int i=;i<=m;i++){
int u=read(),v=read(),w=read();
dis[u][v]=min(dis[u][v],w);
}
for(int ss=;ss<=n;ss++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][ss]+dis[ss][j]);
while(l<=r){
int mid=l+r>>;
if(check(mid)) maxn=max(maxn,mid),l=mid+;
else r=mid-;
}
printf("%lld\n",maxn);
}
[APIO2017]商旅的更多相关文章
- BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划
BZOJ 4898 [APIO2017] 商旅 | SPFA判负环 分数规划 更清真的题面链接:https://files.cnblogs.com/files/winmt/merchant%28zh_ ...
- [BZOJ4898] [Apio2017]商旅
[BZOJ4898] [Apio2017]商旅 传送门 试题分析 考虑两个点之间的路径,显然如果交易的话肯定选\(S_{t,i}-B_{s,i}\)最大的. 那么我们可以先用\(Cost\)把两个点的 ...
- 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会
01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...
- 【BZOJ4898】[Apio2017]商旅 分数规划+SPFA
[BZOJ4898][Apio2017]商旅 Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所深深吸引,决定定居于此,做一个 ...
- [APIO2017]商旅——分数优化+floyd+SPFA判负环+二分答案
题目链接: [APIO2017]商旅 枚举任意两个点$(s,t)$,求出在$s$买入一个物品并在$t$卖出的最大收益. 新建一条从$s$到$t$的边,边权为最大收益,长度为原图从$s$到$t$的最短路 ...
- bzoj 4898: [Apio2017]商旅
Description 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所 深深吸引,决定定居于此,做一个商人.科巴有个集市,集市用从1到N的整数编号 ...
- [APIO2017]商旅(floyd+分数规划+SPFA)
题解:首先肯定要跑最短路,而n<=100,所以可以用floyd,然后根据比值,很容易想到二分答案,然后再SPFA跑一遍负环,就能求出解了. #include<bits/stdc++.h&g ...
- BZOJ4898/5367 Apio2017商旅(分数规划+floyd)
如果要在某点买入某物品并在另一点卖出,肯定是走其间最短路径.于是预处理任意两点间的收益和最短路径,连完边二分答案判负环即可,可以全程floyd.注意inf大小. #include<iostrea ...
- [APIO2017]商旅 0/1分数规划
---题面--- 题解: upd: 在洛谷上被Hack了...思路应该是对的,代码就别看了 感觉有个地方还是非常妙的,就是因为在x买东西,在y卖出,就相当于直接从x走向了y,因为经过中间的城市反正也不 ...
- BZOJ4898 & BZOJ5367 & 洛谷3778:[APIO2017]商旅——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4898 https://www.lydsy.com/JudgeOnline/problem.php? ...
随机推荐
- 爬虫初体验:Python+Requests+BeautifulSoup抓取广播剧
可以看到一个DIV下放一个广播剧的信息,包括名称和地址,第一步我们先收集所有广播剧的收听地址: # 用requests的get方法访问novel_list_resp = requests.get(&q ...
- lintcode407 加一
加一 给定一个非负数,表示一个数字数组,在该数的基础上+1,返回一个新的数组. 该数字按照大小进行排列,最大的数在列表的最前面. 您在真实的面试中是否遇到过这个题? Yes 样例 给定 [1,2,3] ...
- hdu刷题2
hdu1021 给n,看费波纳列数能否被3整除 算是找规律吧,以后碰到这种题就打打表找找规律吧 #include <stdio.h> int main(void) { int n; whi ...
- ubuntu networking 与 network-manager
刚遇到的坑,因为操作不当导致网络中断,于是手动配置了/etc/network/interfaces , 修复了系统之后发现ubuntu-desktop中的有线链接不见了,百度了一下说是networki ...
- UVa 10082 - WERTYU 解题报告 - C语言
1.题目大意: 输入一个错位的字符串(字母全为大写),输出原本想打出的句子. 2.思路: 如果将每个输入字符所对应的应输出字符一一使用if或者switch,则过于繁琐.因此考虑使用常量数组实现. 3. ...
- 我的linux操作习惯
标签(空格分隔): ubuntu 最佳操作 用linux随时可能会有宕机的危险,谁知道我哪会神经病犯了呢.用deepin宕机的可能性会更高的,所以我才不得不安装一个windows做备份,然后把数据备份 ...
- 业务迁移---redis
以前也没怎么搞过redis 只知道他是一个nosql数据库很强大,这次迁移用到了~ 正好熟练一下并记录过程,还挺繁琐.. 记录一下在学习中的几个问题,总结加深一下印象,有可能会漏掉或者有误差的地方~ ...
- 第十六次ScrumMeeting会议
第十六次Scrum Meeting 时间:2017/12/6 地点:线上+SPR咖啡馆 人员:蔡帜 王子铭 游心 解小锐 王辰昱 李金奇 杨森 陈鑫 照片: 目前工作进展 名字 今日 明天的工作 遇到 ...
- win7 个人电脑 IIS7服务器(web服务器) 同一局域网下均可访问本机网页
建立web服务器: 1.控制面板-->程序-->打开或关闭windows功能-->internet信息服务全部打钩,确定即可. 访问网页: 1.C:\inetpub\wwwroot\ ...
- ajax的一些实用技巧
1.尽量优先采用ajax获取html文件,然后再操作dom把数据填充到里面 在实际项目中,如果前端开发人员没有把页面给切分开,那么有如下两种办法可供选择:其一是,在各种点击事件中,用js去拼接并在拼接 ...