https://www.lydsy.com/JudgeOnline/problem.php?id=4516

魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1、2 拼凑起来形成一个魔咒串 [1,2]。
一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒。
例如 S=[1,2,1] 时,它的生成魔咒有 [1]、[2]、[1,2]、[2,1]、[1,2,1] 五种。S=[1,1,1] 时,它的生成魔咒有 [1]、[1,1]、[1,1,1] 三种。最初 S 为空串。共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符。每次操作后都需要求出,当前的魔咒串 S 共有多少种生成魔咒。

SAM傻逼题,然而我把SAM忘光了?

没关系SAM怎么建我还记得,咦SAM怎么统计不同字符串个数来着?

于是我看了一眼BZOJ3998:[TJOI2015]弦论

我们知道只要遍历后缀自动机就能得到所有不相同的子串,相当于每个节点有价值size=1,如果我们倒序遍历并且累加的话就能求出sum。

当然我们没必要每次都求一遍sum,我们发现我们新加入的节点,其造成的贡献按照我们上面的推论就是tr[np].l-tr[tr[np].fa].l。

(你可以试着画一个简单的后缀自动机感受一下,比如说“1231”,你就会发现实际造成贡献的就是fa~np的每个节点(除np)都由np转移来了+1,这些1需要累加到一起汇总到root,当然同理对于我们因为right集合不同而新开的点也是一样的。)

没了,很水吧。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
#define fi first
#define se second
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
map<int,int>::iterator it;
struct node{
map<int,int>a;
int fa,l;
}tr[N<<];
int n,last,cnt;
ll ans;
inline void insert(int c){
int p=last,np=++cnt;
last=np;tr[np].l=tr[p].l+;
for(;p&&!tr[p].a[c];p=tr[p].fa)tr[p].a[c]=np;
if(!p)tr[np].fa=;
else{
int q=tr[p].a[c];
if(tr[p].l+==tr[q].l)tr[np].fa=q;
else{
int nq=++cnt;tr[nq].l=tr[p].l+;
for(it=tr[q].a.begin();it!=tr[q].a.end();it++)
tr[nq].a[it->fi]=it->se;
tr[nq].fa=tr[q].fa;tr[q].fa=tr[np].fa=nq;
for(;tr[p].a[c]==q;p=tr[p].fa)tr[p].a[c]=nq;
}
}
ans+=tr[np].l-tr[tr[np].fa].l;
}
int main(){
n=read();
last=cnt=;
for(int i=;i<=n;i++){
insert(read());printf("%lld\n",ans);
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4516:[SDOI2016]生成魔咒——题解的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. BZOJ4516 [Sdoi2016]生成魔咒 【后缀自动机】

    题目 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2, ...

  3. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  4. BZOJ4516 SDOI2016生成魔咒(后缀数组+平衡树)

    一个字符串本质不同的子串数量显然是总子串数减去所有height值.如果一个个往里加字符的话,每次都会改动所有后缀完全没法做.但发现如果从后往前加的话,每次只会添加一个后缀.于是我们把字符串倒过来,每次 ...

  5. bzoj4516: [Sdoi2016]生成魔咒 sam

    题意:每次插入一个数字,查询本质不同的子串有多少个 题解:sam,数字很大,ch数组用map来存,每次ins之后查询一下新建点表示多少个本质不同的子串(l[np]-l[fa[np]]) /****** ...

  6. bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...

  7. BZOJ4516: [Sdoi2016]生成魔咒

    果然SA比SAM+map快~加了fread目前rank1. 首先这是SAM裸题,然而SA求本质不同子串个数也很容易.考虑倒着建SA,这样没错加一个字符就变成加一个后缀,其他后缀都不变,那么i的答案就是 ...

  8. 2018.12.23 bzoj4516: [Sdoi2016]生成魔咒(后缀自动机)

    传送门 samsamsam入门题. 题意简述:给出一个串让你依次插入字符,求每次插入字符之后不同子串的数量. 显然每次的变化量只跟新出现的nnn个后缀有关系,那么显然就是maxlenp−maxlenl ...

  9. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

随机推荐

  1. css多行文本溢出显示省略号(…)

    text-overflow:ellipsis属性可以实现单行文本的溢出显示省略号(…).但部分浏览器还需要加宽度width属性. css代码: overflow: hidden; text-overf ...

  2. #pragma pack(n)对齐格式

    #pragma pack(n)对齐格式 #pragma pack(n) 是预处理器用来指定对齐格式的指令,表示n对齐.当元素字节小于n时,要扩展到n:若元素字节大于n则占用其实际大小. struct ...

  3. 使用Python进行AES加密和解密

    摘录于:http://blog.csdn.net/nurke/article/details/77267081 另外参考:http://www.cnblogs.com/kaituorensheng/p ...

  4. 软件测试基础-Homework1

    The error was in my graduate work which was about game development.I broadcast some messages to the ...

  5. postmortem report of period M2

    一.设想和目标 1.我们的软件主要要解决学长设计的学霸系统中视频及文档的浏览功能问题. 2.时间相对充裕.不过对于我们这些零基础的人来说还是比较困难. 3.我们团队中不同意见通常会进行进一步讨论,说出 ...

  6. 20172333 2017-2018-2 《Java程序设计》第7周学习总结

    20172333 2017-2018-2 <Java程序设计>第7周学习总结 教材学习内容 1.继承是创建新类的快捷方式之一,继承可以使用父类的所有方法及对象. 2.继承具有单向性,父类不 ...

  7. 什么是Processing

    Processing是一种计算机语言,以JAVA语法为基础,可转化成JAVA程序,不过在语法上简易许多.所有的原始代码及开发环境开放,主要用于艺术.影像.影音的设计与处理. 其次为什么要介绍这款软件呢 ...

  8. lintcode-153-数字组合 II

    153-数字组合 II 给出一组候选数字(C)和目标数字(T),找出C中所有的组合,使组合中数字的和为T.C中每个数字在每个组合中只能使用一次. 注意事项 所有的数字(包括目标数字)均为正整数. 元素 ...

  9. LintCode-66.二叉树的前序遍历

    二叉树的前序遍历 给出一棵二叉树,返回其节点值的前序遍历. 样例 给出一棵二叉树 {1,#,2,3}, 返回 [1,2,3]. 挑战 你能使用非递归实现么? 标签 递归 二叉树 二叉树遍历 非递归 c ...

  10. iOS开发多线程编程2 - NSOperation

    1.简介 NSOperation实例封装了需要执行的操作和执行操作所需的数据,并且能够以并发或非并发的方式执行这个操作. NSOperation本身是抽象基类,因此必须使用它的子类,使用NSOpera ...