【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp
题目描述
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
输入
第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7
输出
输出最小费用
样例输入
5 4
3
4
2
1
4
样例输出
1
题解
斜率优化dp
设f[i]为第i个物品为某容器末尾时前i个物品的最小总代价,
那么就有f[i]=f[j]+(i-j-1+sum[i]-sum[j]-l)^2
=f[j]+(t[i]-t[j]-l')^2
其中t[i]为前缀和sum[i]与i的和,l'为l+1(代码中直接将l++),目的是方便下一步推导与计算。
展开平方并整理可得f[j]+(t[j]+l')^2=2*t[i]*t[j]+(f[i]+2*t[i]*l'-t[i]^2)。
这是y=kx+b的形式,并且要求的是b的最大值,于是维护一个下凸包即可。
#include <cstdio>
#include <algorithm>
#define y(i) (f[i] + (t[i] + l) * (t[i] + l))
#define x(i) t[i]
using namespace std;
int q[50010] , head , tail;
long long f[50010] , t[50010];
int main()
{
int n , i;
long long l , a;
scanf("%d%lld" , &n , &l);
l ++ ;
for(i = 1 ; i <= n ; i ++ )
scanf("%lld" , &a) , t[i] = t[i - 1] + a + 1;
for(i = 1 ; i <= n ; i ++ )
{
while(head < tail && y(q[head + 1]) - y(q[head]) <= ((x(q[head + 1]) - x(q[head]))) * 2 * t[i]) head ++ ;
f[i] = f[q[head]] + (t[i] - t[q[head]] - l) * (t[i] - t[q[head]] - l);
while(head < tail && (y(i) - y(q[tail])) * (x(q[tail]) - x(q[tail - 1])) < (x(i) - x(q[tail])) * (y(q[tail]) - y(q[tail - 1]))) tail -- ;
q[++tail] = i;
}
printf("%lld\n" , f[n]);
return 0;
}
【bzoj1010】[HNOI2008]玩具装箱toy 斜率优化dp的更多相关文章
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- [bzoj1010][HNOI2008]玩具装箱toy_斜率优化dp
玩具装箱toy bzoj-1010 HNOI-2008 题目大意:P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- P3195 [HNOI2008]玩具装箱TOY 斜率优化dp
传送门:https://www.luogu.org/problem/P3195 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任 ...
- [luogu3195 HNOI2008] 玩具装箱TOY (斜率优化dp)
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...
- 洛谷P3195 [HNOI2008]玩具装箱TOY——斜率优化DP
题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最 ...
- bzoj1010: [HNOI2008]玩具装箱toy——斜率优化
方程 $\Large f(i)=min(f(j)+(s(i)-s(j)-1-L)^2)$ 其中$s(i)$为i的前缀和再加上$i$ 对于某个$i$若$j$比$k$优,则 $\large f(j)+(s ...
- [BZOJ1010] [HNOI2008] 玩具装箱toy (斜率优化)
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- Bzoj 1010: [HNOI2008]玩具装箱toy(斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MB Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定 ...
随机推荐
- 【LG1393】动态逆序对
[LG1393]动态逆序对 题面 洛谷 题解 \(CDQ\)分治,按照时间来分治 应为一个删除不能对前面的操作贡献,所以考虑一个删除操作对它后面时间的操作的贡献 用上一个答案减去次贡献即可 代码 #i ...
- GitHub 配置指南
Git和GitHub的区别 GitHub术语解析 配置使用 注册GitHub帐号 创建Git 创建库 复制库 社交化 Git和GitHub的区别 Git是一个分布式的版本控制系统,与SVN类似:最初由 ...
- Question | 你所遇到的验证码问题可能都在这里了
本文来自网易云社区 "Question"为网易云易盾的问答栏目,将会解答和呈现安全领域大家常见的问题和困惑.如果你有什么疑惑,也欢迎通过邮件(zhangyong02@corp.ne ...
- WPF DataGridRow Event
CM(Caliburn.Micro)框架绑定DataGridRow事件 <DataGrid.ItemContainerStyle> <Style TargetType="D ...
- unity3d 计时功能舒爽解决方案
上次也写了一篇计时功能的博客 今天这篇文章和上次的文章实现思路不一样,结果一样 上篇文章地址:http://www.cnblogs.com/shenggege/p/4251123.html 思路决定一 ...
- leetcode-生成括号(回溯算法)
转载出处:https://blog.csdn.net/yanerhao/article/details/68561290 生成括号 给出 n 代表生成括号的对数,请你写出一个函数,使其能够生 ...
- centos 6.5 启动时卡在进度条位置无法进入系统解决办法。
今天公司服务器因突然断电导致phddns 花生壳 启动失败,一直卡在启动进度条页面. 解决办法 1.按F5查看卡在什么位置, 2.查看解决方法:程序卡住的情况下,直接备份资料后,卸载程序重启就可以了. ...
- Tensorflow中使用tfrecord方式读取数据-深度学习-周振洋
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用 ...
- 使用清华镜像在python中pip 安装
Anaconda的安装步骤不在本文的讨论中,我们主要是学习一下如何配置conda的镜像,以及一些问题的解决过程 配置镜像 在conda安装好之后,默认的镜像是官方的,由于官网的镜像在境外,我们使用国内 ...
- LeetCode 100——相同的树
1. 题目 2. 解答 针对两棵树的根节点,有下列四种情况: p 和 q 都为空,两棵树相同: p 不为空 q 为空,两棵树不相同: p 为空 q 不为空,两棵树不相同: p 和 q 都不为空,如果两 ...