注意到A+B+C很小,容易想到设f[i][A][B][C]为第i次攻击后有A个血量为1、B个血量为2、C个血量为3的期望伤害,倒推暴力转移即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
double f[][][][];
int T,n,a,b,c;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4832.in","r",stdin);
freopen("bzoj4832.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
for (int i=;i<=;i++)
for (int x=;x<=;x++)
for (int y=;y<=-x;y++)
for (int z=;z<=-x-y;z++)
{
f[i][x][y][z]=f[i-][x][y][z]+;
if (x) f[i][x][y][z]+=f[i-][x-][y][z]*x;
if (y) f[i][x][y][z]+=f[i-][x+][y-][z+(x+y+z<)]*y;
if (z) f[i][x][y][z]+=f[i-][x][y+][z-+(x+y+z<)]*z;
f[i][x][y][z]/=(x+y+z+);
}
while (T--)
{
n=read(),a=read(),b=read(),c=read();
printf("%.2lf\n",f[n][a][b][c]);
}
return ;
}

BZOJ4832 抵制克苏恩(概率期望+动态规划)的更多相关文章

  1. [BZOJ4832]抵制克苏恩(概率期望DP)

    方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...

  2. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  3. bzoj 4832 抵制克苏恩 概率期望dp

    考试时又翻车了..... 一定要及时调整自己的思路!!! 随从最多有7个,只有三种,所以把每一种随从多开一维 so:f[i][j][k][l]为到第i次攻击前,场上有j个1血,k个2血,l个3血随从的 ...

  4. [bzoj4832]抵制克苏恩 概率dp

    考试的时候打了个搜索,时间比较短,样例又非常的弱,实在不太清楚他这个到底是什么意思. 不过lc大神好腻害,讲解了一下非常的清楚了. f[i][j][k][l]表示第i次伤害(啊),一滴血j个,两滴血k ...

  5. [BZOJ4832]抵制克苏恩

    [BZOJ4832]抵制克苏恩 思路: \(f[i][j][k][l]\)表示打了\(i\)次,血量为\(1\sim 3\)的随从有\(j,k,l\)个的期望.转移时注意避免重复. 源代码: #inc ...

  6. 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望

    [BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...

  7. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  8. 【BZOJ 4832 】 4832: [Lydsy2017年4月月赛]抵制克苏恩 (期望DP)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 275  Solved: 87 Descripti ...

  9. 【题解】亚瑟王 HNOI 2015 BZOJ 4008 概率 期望 动态规划

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害, ...

随机推荐

  1. Prism for WPF 搭建一个简单的模块化开发框架(五)添加聊天、消息模块

    原文:Prism for WPF 搭建一个简单的模块化开发框架(五)添加聊天.消息模块 中秋节假期没事继续搞了搞 做了各聊天的模块,需要继续优化 第一步画页面 页面参考https://github.c ...

  2. substr是不安全的

    今天遇到一个问题,数据库中保存的内容通过php在页面无法显示,如果将内容换行或加个空格或者随便加点其他内容就能正常显示. 非常的诡异,显示的内容是通过截取得到的.代码非常简单 substr($pMar ...

  3. CC3200使用MQTT的SSL加密证书可用日期修改

    1. 在使用CC3200进行SSL加密的时候,需要证书,但是证书有一个截止日期,如果当前CC3200没有设置这个日期,那么证书通信会失败,需要添加代码 int setDeviceTime() { Sl ...

  4. android学习十二 配置变化

    1.配置变化会终止当前活动,并重建活动 2.配置变化有    2.1  屏幕方向变化    2.2  语言变化    2.3   插到基座等   3. 配置变化应用程序不会清除,上下文对新活动依然有效 ...

  5. json模块使用总结——Python

    # 原创文章,未经允许请勿转载 通过Python的json模块,可以将字符串形式的json数据转化为字典,也可以将Python中的字典数据转化为字符串形式的json数据. 之前使用这个模块时,都是随用 ...

  6. Qt-QPalette-调色板学习

    已经很久没有更新博客了,一是因为换了公司,完全是断网开发了,没有时间来写博客,最主要的就是温水煮青蛙,自己在舒适的环境中越来越懒了,最近打算强制自己更新一波.不知道能坚持多久.由于目前没有具体的Qt项 ...

  7. Selenium(Python)驱动Chrome浏览器

    Chrome浏览器与chromedriver.exe驱动可以是官网上最新的, 随意! Chrome.py: from selenium import webdriverfrom selenium.we ...

  8. 第五模块·WEB开发基础-第2章JavaScript基础

    第1章 JavaScript基础 01-JavaScript历史介绍 02-JavaScript的组成 03-JavaScript的引入方式 04-变量的使用 05-基本数据类型(一) 06-基本数据 ...

  9. 使用jenkins构建一个maven项目

    1.登陆到jenkins首页,创建项目-->选择maven-->输入项目名称-->选择项目类型 2.进入项目配置:{先写一下项目描述和设置下保留的历史构建,然后向下拉} 找到源吗管理 ...

  10. 贪心算法——Huffman 压缩编码的实现

    1. 如何理解 "贪心算法" 假设我们有一个可以容纳 100 Kg 物品的背包,可以装各种物品.我们有以下 5 种豆子,每种豆子的总量和总价值都各不相同.怎样装才能让背包里豆子的总 ...