Python caffe.TEST Example(Demo)
下面提供了caffe python的六个测试demo,大家可以根据自己的需求进行修改。
Example 1
- From project FaceDetection_CNN-master, under directory , in source file test.py.
def convert_full_conv():
# Load the original network and extract the fully connected layers' parameters.
net = caffe.Net('deploy.prototxt',
'alexNet__iter_60000.caffemodel',
caffe.TEST)
params = ['fc6', 'fc7', 'fc8_flickr']
fc_params = {pr: (net.params[pr][0].data, net.params[pr][1].data) for pr in params}
# Load the fully convolutional network to transplant the parameters.
net_full_conv = caffe.Net('face_full_conv.prototxt',
'alexNet__iter_60000.caffemodel',
caffe.TEST)
params_full_conv = ['fc6-conv', 'fc7-conv', 'fc8-conv']
conv_params = {pr: (net_full_conv.params[pr][0].data, net_full_conv.params[pr][1].data) for pr in params_full_conv}
for pr, pr_conv in zip(params, params_full_conv):
conv_params[pr_conv][0].flat = fc_params[pr][0].flat # flat unrolls the arrays
conv_params[pr_conv][1][...] = fc_params[pr][1]
net_full_conv.save('face_full_conv.caffemodel')
Example 2
- From project visual-concepts-master, under directory , in source file test_model.py.
def load_model(prototxt_file, model_file, base_image_size, mean, vocab):
"""
Load the model from file. Includes pointers to the prototxt file,
caffemodel file name, and other settings - image mean, base_image_size, vocab
"""
model = {};
model['net']= caffe.Net(prototxt_file, model_file, caffe.TEST);
model['base_image_size'] = base_image_size;
model['means'] = mean; model['vocab'] = vocab;
return model
Example 3
- From project SketchingAI-master, under directory src, in source file gendraw.py.
- Caffe中只给出了分类模型classify.py,如果想写预测模型predict.py可以参考这个
def test_old():
with open(labelspath,"r") as opened_file:
labels = opened_file.readlines()
caffe.set_mode_gpu()
net = caffe.Net(model_file, pretrained, caffe.TEST)
transformer = caffe.io.Transformer({"data": net.blobs["data"].data.shape})
transformer.set_transpose("data",(2,0,1))
transformer.set_mean("data",numpy.load(caffe_root+"/python/caffe/imagenet/ilsvrc_2012_mean.npy").mean(1).mean(1))
transformer.set_raw_scale("data",255)
transformer.set_channel_swap("data",(2,1,0))
net.blobs["data"].reshape(1,3,227,227)
test_image = dataroot+"/homecat.jpg"
test_image1 = dataroot+"/241.png"
net.blobs["data"].data[...] = transformer.preprocess("data", caffe.io.load_image(test_image1))
out = net.forward()
print net.blobs["fc6"].data.shape
prediction = out["prob"]
indices = numpy.argpartition(prediction[0],-10)[-10:]
print prediction[0].argmax(), labels[prediction[0].argmax()]
net.blobs["data"].data[...] = transformer.preprocess("data", caffe.io.load_image(test_image))
out = net.forward()
print net.blobs["fc6"].data.shape
prediction = out["prob"]
indices = numpy.argpartition(prediction[0],-10)[-10:]
print prediction[0].argmax(), labels[prediction[0].argmax()]
for index in indices:
print labels[index]
Example 4
- From project fast-rcnn-master, under directory tools, in source file compress_net.py.
def main():
args = parse_args()
net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST)
net_svd = caffe.Net(args.prototxt_svd, args.caffemodel, caffe.TEST)
print('Uncompressed network {} : {}'.format(args.prototxt, args.caffemodel))
print('Compressed network prototxt {}'.format(args.prototxt_svd))
out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svd'
out_dir = os.path.dirname(args.caffemodel)
# Compress fc6
if net_svd.params.has_key('fc6_L'):
l_fc6 = net_svd.params['fc6_L'][0].data.shape[0]
print(' fc6_L bottleneck size: {}'.format(l_fc6))
# uncompressed weights and biases
W_fc6 = net.params['fc6'][0].data
B_fc6 = net.params['fc6'][1].data
print(' compressing fc6...')
Ul_fc6, L_fc6 = compress_weights(W_fc6, l_fc6)
assert(len(net_svd.params['fc6_L']) == 1)
# install compressed matrix factors (and original biases)
net_svd.params['fc6_L'][0].data[...] = L_fc6
net_svd.params['fc6_U'][0].data[...] = Ul_fc6
net_svd.params['fc6_U'][1].data[...] = B_fc6
out += '_fc6_{}'.format(l_fc6)
# Compress fc7
if net_svd.params.has_key('fc7_L'):
l_fc7 = net_svd.params['fc7_L'][0].data.shape[0]
print ' fc7_L bottleneck size: {}'.format(l_fc7)
W_fc7 = net.params['fc7'][0].data
B_fc7 = net.params['fc7'][1].data
print(' compressing fc7...')
Ul_fc7, L_fc7 = compress_weights(W_fc7, l_fc7)
assert(len(net_svd.params['fc7_L']) == 1)
net_svd.params['fc7_L'][0].data[...] = L_fc7
net_svd.params['fc7_U'][0].data[...] = Ul_fc7
net_svd.params['fc7_U'][1].data[...] = B_fc7
out += '_fc7_{}'.format(l_fc7)
filename = '{}/{}.caffemodel'.format(out_dir, out)
net_svd.save(filename)
print 'Wrote svd model to: {:s}'.format(filename)
Example 5
- From project DIGITS-master, under directory digits/model/tasks, in source file caffe_train.py.
def get_net(self, epoch=None):
"""
Returns an instance of caffe.Net
Keyword Arguments:
epoch -- which snapshot to load (default is -1 to load the most recently generated snapshot)
"""
if not self.has_model():
return False
file_to_load = None
if not epoch:
epoch = self.snapshots[-1][1]
file_to_load = self.snapshots[-1][0]
else:
for snapshot_file, snapshot_epoch in self.snapshots:
if snapshot_epoch == epoch:
file_to_load = snapshot_file
break
if file_to_load is None:
raise Exception('snapshot not found for epoch "%s"' % epoch)
# check if already loaded
if self.loaded_snapshot_file and self.loaded_snapshot_file == file_to_load \
and hasattr(self, '_caffe_net') and self._caffe_net is not None:
return self._caffe_net
if config_value('caffe_root')['cuda_enabled'] and\
config_value('gpu_list'):
caffe.set_mode_gpu()
# load a new model
self._caffe_net = caffe.Net(
self.path(self.deploy_file),
file_to_load,
caffe.TEST)
self.loaded_snapshot_epoch = epoch
self.loaded_snapshot_file = file_to_load
return self._caffe_net
Example 6
- From project DIGITS-master, under directory examples/classification, in source file example.py.
def get_net(caffemodel, deploy_file, use_gpu=True):
"""
Returns an instance of caffe.Net
Arguments:
caffemodel -- path to a .caffemodel file
deploy_file -- path to a .prototxt file
Keyword arguments:
use_gpu -- if True, use the GPU for inference
"""
if use_gpu:
caffe.set_mode_gpu()
# load a new model
return caffe.Net(deploy_file, caffemodel, caffe.TEST)
Python caffe.TEST Example(Demo)的更多相关文章
- appium+Python真机运行测试demo的方法
appium+Python真机运行测试demo的方法 一, 打开手机的USB调试模式 二, 连接手机到电脑 将手机用数据线连接到电脑,并授权USB调试模式.查看连接的效果,在cmd下运行命 ...
- make pycaffe时候报错:Makefile:501: recipe for target 'python/caffe/_caffe.so' failed
安装caffe-ssd编译环境的时候报错: python/caffe/_caffe.cpp:10:31: fatal error: numpy/arrayobject.h: No such file ...
- Chapter 3 Start Caffe with MNIST Demo
先从一个具体的例子来开始Caffe,以MNIST手写数据为例. 1.下载数据 下载mnist到caffe-master\data\mnist文件夹. THE MNIST DATABASE:Yann L ...
- 第一个 Python 程序 - Email Manager Demo
看了一些基础的 Python 新手教程后,深深感觉到 Python 的简洁与强大,这是我的第一个 Python Demo.下面是完整代码与执行截图. 代码: # encoding: utf-8 ''' ...
- 安装python caffe过程中遇到的一些问题以及对应的解决方案
关于系统环境: Ubuntu 16.04 LTS cuda 8.0 cudnn 6.5 Anaconda3 编译pycaffe之前需要配置文件Makefile.config ## Refer to h ...
- python 词云小demo
词云小demo jiebawordcloud 一 什么是词云? 由词汇组成类似云的彩色图形.“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过 ...
- Python实例---简单购物车Demo
简单购物车Demo # version: python3.2.5 # author: 'FTL1012' # time: 2017/12/7 09:16 product_list = ( ['Java ...
- python caffe 在师兄的代码上修改成自己风格的代码
首先,感谢师兄的帮助.师兄的代码封装成类,流畅精美,容易调试.我的代码是堆积成的,被师兄嘲笑说写脚本.好吧!我的代码只有我懂,哈哈! 希望以后代码能写得工整点.现在还是让我先懂.这里,我做了一个简单的 ...
- python+caffe训练自己的图片数据流程
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...
随机推荐
- git、git bash、git shell的区别
之前安装了github(CSDN上找的,官网的下不来,貌似要FQ - -)后,自带了git shell,如图: 输命令的时候发现网上的一些命令不管用,譬如:git ls –a 查看隐藏的 .git 文 ...
- HYSBZ 3676 回文串 (回文树)
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1680 Solved: 707 [Submit][Stat ...
- maven pom.xml常用标签 Exclusions plugins是什么意思
Exclusions maven的依赖(dependencies)有传递性,为了解决兼容性问题,就用exclusions来排除造成兼容性问题的依赖. 写法如下: 加入项目A依赖项目B,项目B依赖项目C ...
- Connecting to Shares And Common Shares
Now that you have these shares, how do people use them? Assuming that you have a share called Apps o ...
- 9.JavaScript简单计算器的实现
1.难点,怎么获取标签的值,注意点,获取到的值都是string类型,还要转换 var num1 = parseInt(document.getElementById("num1") ...
- 全面解析JavaScript中“&&”和“||”操作符(总结篇)
1.||(逻辑或), 从字面上来说,只有前后都是false的时候才返回false,否则返回true. ? 1 2 3 4 alert(true||false); // true alert(false ...
- 洛谷 P2481 [SDOI2010]代码拍卖会
洛谷 这大概是我真正意义上的第一道黑题吧! 自己想出了一个大概,状态转移方程打错了一点点,最后还是得看题解. 一句话题意:求出有多少个\(n\)位的数,满足各个位置上的数字从左到右不下降,且被\(p\ ...
- Django HttpResponse对象详解
HttpResponse对象 Django服务器接收到客户端发送过来的请求后,会将提交上来的这些数据封装成一个HttpRequest对象传给视图函数.那么视图函数在处理完相关的逻辑后,也需要返回一个响 ...
- Python 模块之 pyexcel_xls
一.适用场景 在很多数据统计或者数据分析的场景中,我们都会使用到excel: 在一些系统中我们也会使用excel作为数据导入和导出的方式,那么如何使用python加以辅助我们快速进行excel数据做更 ...
- 上手Keras
Keras的核心数据是“模型”,模型是一种组织网络层的方式.Keras中主要的模型是Sequential模型,Sequential是一系列网络层按顺序构成的栈. Sequential模型如下: fro ...