下面提供了caffe python的六个测试demo,大家可以根据自己的需求进行修改。

Example 1

  • From project FaceDetection_CNN-master, under directory , in source file test.py.
def convert_full_conv():
# Load the original network and extract the fully connected layers' parameters.
net = caffe.Net('deploy.prototxt',
'alexNet__iter_60000.caffemodel',
caffe.TEST)
params = ['fc6', 'fc7', 'fc8_flickr']
fc_params = {pr: (net.params[pr][0].data, net.params[pr][1].data) for pr in params}
# Load the fully convolutional network to transplant the parameters.
net_full_conv = caffe.Net('face_full_conv.prototxt',
'alexNet__iter_60000.caffemodel',
caffe.TEST)
params_full_conv = ['fc6-conv', 'fc7-conv', 'fc8-conv']
conv_params = {pr: (net_full_conv.params[pr][0].data, net_full_conv.params[pr][1].data) for pr in params_full_conv}
for pr, pr_conv in zip(params, params_full_conv):
conv_params[pr_conv][0].flat = fc_params[pr][0].flat # flat unrolls the arrays
conv_params[pr_conv][1][...] = fc_params[pr][1]
net_full_conv.save('face_full_conv.caffemodel')

Example 2

  • From project visual-concepts-master, under directory , in source file test_model.py.
def load_model(prototxt_file, model_file, base_image_size, mean, vocab):
"""
Load the model from file. Includes pointers to the prototxt file,
caffemodel file name, and other settings - image mean, base_image_size, vocab
"""
model = {};
model['net']= caffe.Net(prototxt_file, model_file, caffe.TEST);
model['base_image_size'] = base_image_size;
model['means'] = mean; model['vocab'] = vocab;
return model

Example 3

  • From project SketchingAI-master, under directory src, in source file gendraw.py.
  • Caffe中只给出了分类模型classify.py,如果想写预测模型predict.py可以参考这个
def test_old():
with open(labelspath,"r") as opened_file:
labels = opened_file.readlines() caffe.set_mode_gpu()
net = caffe.Net(model_file, pretrained, caffe.TEST) transformer = caffe.io.Transformer({"data": net.blobs["data"].data.shape})
transformer.set_transpose("data",(2,0,1))
transformer.set_mean("data",numpy.load(caffe_root+"/python/caffe/imagenet/ilsvrc_2012_mean.npy").mean(1).mean(1))
transformer.set_raw_scale("data",255)
transformer.set_channel_swap("data",(2,1,0)) net.blobs["data"].reshape(1,3,227,227) test_image = dataroot+"/homecat.jpg"
test_image1 = dataroot+"/241.png" net.blobs["data"].data[...] = transformer.preprocess("data", caffe.io.load_image(test_image1)) out = net.forward()
print net.blobs["fc6"].data.shape prediction = out["prob"] indices = numpy.argpartition(prediction[0],-10)[-10:] print prediction[0].argmax(), labels[prediction[0].argmax()] net.blobs["data"].data[...] = transformer.preprocess("data", caffe.io.load_image(test_image)) out = net.forward()
print net.blobs["fc6"].data.shape prediction = out["prob"] indices = numpy.argpartition(prediction[0],-10)[-10:] print prediction[0].argmax(), labels[prediction[0].argmax()] for index in indices:
print labels[index]

Example 4

  • From project fast-rcnn-master, under directory tools, in source file compress_net.py.
def main():
args = parse_args() net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) net_svd = caffe.Net(args.prototxt_svd, args.caffemodel, caffe.TEST) print('Uncompressed network {} : {}'.format(args.prototxt, args.caffemodel))
print('Compressed network prototxt {}'.format(args.prototxt_svd)) out = os.path.splitext(os.path.basename(args.caffemodel))[0] + '_svd'
out_dir = os.path.dirname(args.caffemodel) # Compress fc6
if net_svd.params.has_key('fc6_L'):
l_fc6 = net_svd.params['fc6_L'][0].data.shape[0]
print(' fc6_L bottleneck size: {}'.format(l_fc6)) # uncompressed weights and biases
W_fc6 = net.params['fc6'][0].data
B_fc6 = net.params['fc6'][1].data print(' compressing fc6...')
Ul_fc6, L_fc6 = compress_weights(W_fc6, l_fc6) assert(len(net_svd.params['fc6_L']) == 1) # install compressed matrix factors (and original biases)
net_svd.params['fc6_L'][0].data[...] = L_fc6 net_svd.params['fc6_U'][0].data[...] = Ul_fc6
net_svd.params['fc6_U'][1].data[...] = B_fc6 out += '_fc6_{}'.format(l_fc6) # Compress fc7
if net_svd.params.has_key('fc7_L'):
l_fc7 = net_svd.params['fc7_L'][0].data.shape[0]
print ' fc7_L bottleneck size: {}'.format(l_fc7) W_fc7 = net.params['fc7'][0].data
B_fc7 = net.params['fc7'][1].data print(' compressing fc7...')
Ul_fc7, L_fc7 = compress_weights(W_fc7, l_fc7) assert(len(net_svd.params['fc7_L']) == 1) net_svd.params['fc7_L'][0].data[...] = L_fc7 net_svd.params['fc7_U'][0].data[...] = Ul_fc7
net_svd.params['fc7_U'][1].data[...] = B_fc7 out += '_fc7_{}'.format(l_fc7) filename = '{}/{}.caffemodel'.format(out_dir, out)
net_svd.save(filename)
print 'Wrote svd model to: {:s}'.format(filename)

Example 5

  • From project DIGITS-master, under directory digits/model/tasks, in source file caffe_train.py.
def get_net(self, epoch=None):
"""
Returns an instance of caffe.Net Keyword Arguments:
epoch -- which snapshot to load (default is -1 to load the most recently generated snapshot)
"""
if not self.has_model():
return False file_to_load = None if not epoch:
epoch = self.snapshots[-1][1]
file_to_load = self.snapshots[-1][0]
else:
for snapshot_file, snapshot_epoch in self.snapshots:
if snapshot_epoch == epoch:
file_to_load = snapshot_file
break
if file_to_load is None:
raise Exception('snapshot not found for epoch "%s"' % epoch) # check if already loaded
if self.loaded_snapshot_file and self.loaded_snapshot_file == file_to_load \
and hasattr(self, '_caffe_net') and self._caffe_net is not None:
return self._caffe_net if config_value('caffe_root')['cuda_enabled'] and\
config_value('gpu_list'):
caffe.set_mode_gpu() # load a new model
self._caffe_net = caffe.Net(
self.path(self.deploy_file),
file_to_load,
caffe.TEST) self.loaded_snapshot_epoch = epoch
self.loaded_snapshot_file = file_to_load return self._caffe_net

Example 6

  • From project DIGITS-master, under directory examples/classification, in source file example.py.
def get_net(caffemodel, deploy_file, use_gpu=True):
"""
Returns an instance of caffe.Net Arguments:
caffemodel -- path to a .caffemodel file
deploy_file -- path to a .prototxt file Keyword arguments:
use_gpu -- if True, use the GPU for inference
"""
if use_gpu:
caffe.set_mode_gpu() # load a new model
return caffe.Net(deploy_file, caffemodel, caffe.TEST)

Python caffe.TEST Example(Demo)的更多相关文章

  1. appium+Python真机运行测试demo的方法

    appium+Python真机运行测试demo的方法 一,    打开手机的USB调试模式 二,    连接手机到电脑 将手机用数据线连接到电脑,并授权USB调试模式.查看连接的效果,在cmd下运行命 ...

  2. make pycaffe时候报错:Makefile:501: recipe for target 'python/caffe/_caffe.so' failed

    安装caffe-ssd编译环境的时候报错: python/caffe/_caffe.cpp:10:31: fatal error: numpy/arrayobject.h: No such file ...

  3. Chapter 3 Start Caffe with MNIST Demo

    先从一个具体的例子来开始Caffe,以MNIST手写数据为例. 1.下载数据 下载mnist到caffe-master\data\mnist文件夹. THE MNIST DATABASE:Yann L ...

  4. 第一个 Python 程序 - Email Manager Demo

    看了一些基础的 Python 新手教程后,深深感觉到 Python 的简洁与强大,这是我的第一个 Python Demo.下面是完整代码与执行截图. 代码: # encoding: utf-8 ''' ...

  5. 安装python caffe过程中遇到的一些问题以及对应的解决方案

    关于系统环境: Ubuntu 16.04 LTS cuda 8.0 cudnn 6.5 Anaconda3 编译pycaffe之前需要配置文件Makefile.config ## Refer to h ...

  6. python 词云小demo

    词云小demo jiebawordcloud 一 什么是词云? 由词汇组成类似云的彩色图形.“词云”就是对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过 ...

  7. Python实例---简单购物车Demo

    简单购物车Demo # version: python3.2.5 # author: 'FTL1012' # time: 2017/12/7 09:16 product_list = ( ['Java ...

  8. python caffe 在师兄的代码上修改成自己风格的代码

    首先,感谢师兄的帮助.师兄的代码封装成类,流畅精美,容易调试.我的代码是堆积成的,被师兄嘲笑说写脚本.好吧!我的代码只有我懂,哈哈! 希望以后代码能写得工整点.现在还是让我先懂.这里,我做了一个简单的 ...

  9. python+caffe训练自己的图片数据流程

    1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...

随机推荐

  1. ASP.NET MVC 数据库依赖缓存

    ASP.NET MVC 数据库依赖缓存   问题背景 最近做一个非常简单的功能,就是使用ajax请求的方式从服务端请求一段下拉表的数据. 以前也有做过这个功能,只不过这次做这个功能的时候冒出了一个想法 ...

  2. Less-mixin判断(守卫)二

    mixin卫士--判断 或与且语法 且:()and() 或:(),() --且 examlpe: .test(@a) when (isNumber(@a)) and (@a>=5){ font- ...

  3. 读 下一代SOA 服务技术与面向服务简明指南

    面向服务的八个设计原则 标准化服务合同 在同一个服务仓库中的服务都符合同样的合同设计标准 服务松耦合 服务合同施加了消费者低耦合的要求,而它们自己也与周围的环境脱钩 服务抽象 服务合同只包含基本信息, ...

  4. k近邻算法python实现 -- 《机器学习实战》

    ''' Created on Nov 06, 2017 kNN: k Nearest Neighbors Input: inX: vector to compare to existing datas ...

  5. Oracle实例的恢复、介质恢复( crash recovery)( Media recovery)

    实例的恢复( crash recovery) 什么时候发生Oracle实例恢复? shutdown abort; 数据库异常down掉(机器死机,掉电...) 实例恢复的原因是数据有丢掉,使用redo ...

  6. You must reset your password using ALTER USER

    mac mysql error You must reset your password using ALTER USER statement before executing this statem ...

  7. 让Windows Server 2008+IIS 7+ASP.NET支持10万个同时请求

    具体设置如下: 1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools >Advanced Settin ...

  8. Docker libnetwork(CNM)设计简介

    The Container Network Model CNM由以下三个组件构成:Sandbox,Endpoint以及Network Sandbox 一个Sandbox包含了一个容器网络栈的配置.其中 ...

  9. python 作用域知识点整理

    1.块级作用域 想想此时运行下面的程序会有输出吗?执行会成功吗? 1 2 3 4 5 6 7 8 9 10 11 12 #块级作用域   if 1 == 1:     name = "lzl ...

  10. 剑指offer(第2版)刷题 Python版汇总

    剑指offer面试题内容 第2章 面试需要的基础知识 面试题1:赋值运算符函数 面试题2:实现Singleton模式  解答 面试题3:数组中重复的数字 解答 面试题4:二维数组中的查找 解答 面试题 ...