学长写的

F. Fantastic Graph

"Oh, There is a bipartite graph.""Make it Fantastic."

X wants to check whether a bipartite graph is a fantastic graph. He has two fantastic numbers, and he wants to let all the degrees to between the two boundaries. You can pick up several edges from the current graph and try to make the degrees of every point to between the two boundaries. If you pick one edge, the degrees of two end points will both increase by one. Can you help X to check whether it is possible to fix the graph?

Input

There are at most 3030 test cases.

For each test case,The first line contains three integers NN the number of left part graph vertices, MM the number of right part graph vertices, and KK the number of edges ( 1 \le N \le 20001≤N≤2000,0 \le M \le 20000≤M≤2000,0 \le K \le 60000≤K≤6000 ). Vertices are numbered from 11 to NN.

The second line contains two numbers L, RL,R (0 \le L \le R \le 300)(0≤L≤R≤300). The two fantastic numbers.

Then KK lines follows, each line containing two numbers UU, VV (1 \le U \le N,1 \le V \le M)(1≤U≤N,1≤V≤M). It shows that there is a directed edge from UU-th spot to VV-th spot.

Note. There may be multiple edges between two vertices.

Output

One line containing a sentence. Begin with the case number. If it is possible to pick some edges to make the graph fantastic, output "Yes" (without quote), else output "No" (without quote).



#include<bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f
#define fi first
#define se second
using namespace std;
const int maxn = 6e3+32;
int n,m,k;
int du[2000+42];
int du2[2000+32];
int L,R;
const int MX = 4000+54;
const int MXE = 19000+43;
struct MaxFlow
{
struct Edge
{
int v, w, nxt;
} edge[MXE],edge2[MXE];
int tot, num, s, t;
int head[MX];
void init()
{
memset(head, -1, sizeof(head));
tot = 0;
}
void add(int u, int v, int w)
{
edge[tot].v = v;
edge[tot].w = w;
edge[tot].nxt = head[u];
head[u] = tot++; edge[tot].v = u;
edge[tot].w = 0;
edge[tot].nxt = head[v];
head[v] = tot++;
} int d[MX], vis[MX], gap[MX];
void bfs()
{
memset(d, 0, sizeof(d));
memset(gap, 0, sizeof(gap));
memset(vis, 0, sizeof(vis));
queue<int>q;
q.push(t);
vis[t] = 1;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = edge[i].nxt)
{
int v = edge[i].v;
if (!vis[v])
{
d[v] = d[u] + 1;
gap[d[v]]++;
q.push(v);
vis[v] = 1;
}
}
}
} int last[MX];
int dfs(int u, int f)
{
if (u == t) return f;
int sap = 0;
for (int i = last[u]; ~i; i = edge[i].nxt)
{
int v = edge[i].v;
if (edge[i].w > 0 && d[u] == d[v] + 1)
{
last[u] = i;
int tmp = dfs(v, min(f - sap, edge[i].w));
edge[i].w -= tmp;
edge[i ^ 1].w += tmp;
sap += tmp;
if (sap == f) return sap;
}
}
if (d[s] >= num) return sap;
if (!(--gap[d[u]])) d[s] = num;
++gap[++d[u]];
last[u] = head[u];
return sap;
} int solve(int st, int ed, int n)
{
int flow = 0;
num = n;
s = st;
t = ed;
bfs();
memcpy(last, head, sizeof(head));
while (d[s] < num) flow += dfs(s, inf);
return flow;
}
} F;
int S,T;
void update(int u,int v,int L,int R)
{
F.add(u,v,R-L);
F.add(S, v, L);
F.add(u, T, L); }
pair<int,int>Q[6000+53]; int main()
{
int ka = 1;
while(~scanf("%d%d%d",&n,&m,&k))
{
F.init();
S = n+m+2;
T = n+m+3;
F.add(n+m+1, 0, INF);
for(int i = 0;i<=max(n,m);i++){
du[i] = du2[i] = 0;
}
scanf("%d%d",&L,&R); for(int i = 1;i<=n;i++){
update(0,i,L,R);
}
for(int i = n+1;i<=n+m;i++)
{
update(i,n+m+1,L,R);
} for(int i = 0;i<k;i++){
int u,v;
scanf("%d%d",&u,&v);
Q[i].first = u;
Q[i].second = v;
du[u]++;
du2[v]++;
F.add(u, v+n, 1);
}
printf("Case %d: ",ka++);
int ret = F.solve(S, T, T + 11);
if(ret != (n+m)*L) puts("No");
else puts("Yes");
}
}

B. Call of Accepted

You and your friends are at the table, playing an old and interesting game - the Call of Cthulhu.

There is a mechanism in the game: rolling the dice. You use a notation to communicate the type of dice that needs to be rolled - the operator "\mathop{\rm d}d". "x\mathop{\rm d}yxdy" means that an yy-sided dice should be rolled xx times and the sum of the results is taken.

Formally, for any two integers x, yx,y satisfying x \geq 0x≥0 and y \geq 1y≥1 , "x\mathop{\rm d}yxdy" means the sum of xx random integers in the range of [1, y][1,y]. It's obvious that either x < 0x<0 or y < 1y<1 makes the expression x\ {\rm d}\ yx d y illegal. For example: "2\mathop{\rm d}62d6" means that rolling a 66-sided dice 22 times. At this time, the result can be at least [1, 1] = 2[1,1]=2, and at most [6, 6] = 12[6,6]=12. The results of rolling can be used extensively in many aspects of the game. For example, an "1\mathop{\rm d}1001d100" can be used to determine whether an action with a percentage probability is successful, and a "3\mathop{\rm d}6+33d6+3 * 22" can be used to calculate the total damage when being attacked by 33 monsters simultaneously. In particular, the precedence of "\mathop{\rm d}d" is above "*". Since the operator "\mathop{\rm d}d" does not satisfy the associative law, it's necessary to make sure that "\mathop{\rm d}d" is right-associative.

Now the game has reached its most exciting stage. You are facing the Great Old One - Cthulhu. Because the spirit has been greatly affected, your sanity value needs to be deducted according to the result of rolling. If the sanity value loses too much, you will fall into madness. As a player, you want to write a program for knowing the minimum and maximum loss of sanity value before rolling, in order to make a psychological preparation.

The oldest and strongest emotion of mankind is fear, and the oldest and strongest kind of fear is fear of the unknown. ----H. P. Lovecraft

Input

There are multiple sets of input, at most 3030 cases.

Each set of input contains a string of only '+', '-', '*', 'd', '(', ')' and integers without spaces, indicating the expression of this sanity loss. The length of the expression will be at most 100100.

It is guaranteed that all expressions are legal, all operators except for '(' and ')' are binary, and all intermediate results while calculating are integers in the range of [-2147483648, 2147483647][−2147483648,2147483647].

The most merciful thing in the world, I think, is the inability of the human mind to correlate all its contents. We live on a placid island of ignorance in the midst of black seas of infinity, and it was not meant that we should voyage far. ----H. P. Lovecraft

Output

For each set of data, output a line of two integers separated by spaces, indicating the minimum and maximum possible values of the sanity loss.



#include<bits/stdc++.h>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define x first
#define y second
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define per(i,a,b) for(int i=a-1;i>=(b);--i)
#define fuck(x) cout<<'['<<#x<<' '<<(x)<<']'
#define sub(x,y) x=((x)-(y)<0)?(x)-(y)+mod:(x)-(y)
#define clr(a,b) memset(a,b,sizeof(a))
#define eps 1e-10
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef unsigned int ui;
const int INF = 0x3f3f3f3f;
const ll INFLL = 0x3f3f3f3f3f3f3f3fLL;
const int mod = 1e9 + 7;
const int MX = 2e6 + 5; vector<string>pre, s;
string str; bool isoperator(string op) {
if(op == "+" || op == "-" || op == "*" || op == "d") return 1;
return 0;
}
int priority(string op) {
if(op == "#") return -1;
if(op == "(") return 0;
if(op == "+" || op == "-") return 1;
if(op == "*") return 2;
if(op == "d") return 3;
return -1;
} void postfix() {
stack<string> OPTR; //运算符栈
stack<string> OPND; //数据栈 OPTR.push("#");
rep(i, 0, pre.size()) {
if (pre[i] == "(") OPTR.push(pre[i]);
else if(pre[i] == ")") {
while(OPTR.top() != "(") {
OPND.push(OPTR.top());
OPTR.pop();
}
OPTR.pop();
} else if (isoperator(pre[i])) {
while(!OPTR.empty() && (priority(pre[i]) < priority(OPTR.top()) || priority(pre[i]) == priority(OPTR.top()) && pre[i] != "d")) {
OPND.push(OPTR.top());
OPTR.pop();
}
OPTR.push(pre[i]);
} else OPND.push(pre[i]);
} while(OPTR.top() != "#") {
OPND.push(OPTR.top());
OPTR.pop();
}
OPTR.pop(); //利用操作符栈逆序即可得到后缀表达式
while(!OPND.empty()) {
OPTR.push(OPND.top());
OPND.pop();
} s.clear();
while(!OPTR.empty()) {
s.push_back(OPTR.top());
OPTR.pop();
}
} bool is_dig(char ch) {return ch >= '0' && ch <= '9';}
void pre_solve() {
pre.clear();
rep(i, 0, str.length()) {
if(is_dig(str[i])) {
rep(j, i, str.length()) {
if(!is_dig(str[j])) {
pre.push_back(str.substr(i, j - i));
i = j - 1;
break;
}
if(j == str.length() - 1) {
pre.push_back(str.substr(i, j - i + 1));
i = j;
break;
}
}
} else pre.push_back(str.substr(i, 1));
}
}
ll str_to_int(string st) {
ll ret = 0;
rep(i, 0, st.length()) ret = ret * 10 + st[i] - '0';
return ret;
} struct node {
ll l, r;
node(ll l = 0, ll r = 0): l(l), r(r) {}
node(string st) {l = r = str_to_int(st);}
node operator-(const node& _A)const {
return node(l - _A.r, r - _A.l);
}
node operator+(const node& _A)const {
return node(l + _A.l, r + _A.r);
}
node operator*(const node& _A)const {
node ret;
ll a = l * _A.l;
ll b = l * _A.r;
ll c = r * _A.l;
ll d = r * _A.r;
ret.l = min(min(a, b), min(c, d));
ret.r = max(max(a, b), max(c, d));
return ret;
}
node operator/(const node& _A)const {
node ret;
ll l1 = max(l, 0ll), r1 = r;
ret.l = l1, ret.r = r1 * _A.r;
return ret;
}
}; int main() {
#ifdef local
freopen("in.txt", "r", stdin);
#endif // local
while(cin >> str) {
pre_solve();
postfix();
stack<node>stk;
node a, b;
rep(i, 0, s.size()) if(isoperator(s[i])) {
b = stk.top(); stk.pop();
a = stk.top(); stk.pop();
// printf("[%lld %lld]\n", a.l, a.r);
// printf("[%lld %lld]\n", b.l, b.r);
if(s[i] == "-") a = a - b;
if(s[i] == "+") a = a + b;
if(s[i] == "*") a = a * b;
if(s[i] == "d") a = a / b;
stk.push(a);
} else stk.push(node(s[i]));
a = stk.top();
printf("%lld %lld\n", a.l, a.r);
}
return 0;
}

G.Spare time



\(a_{n} = a_{n-1}+2\times n\)

\(a_{n} = (a_{n}-a_{n-1})+(a_{n-1}-a_{n-2})+...+(a_{2}-a_{1})+a_{1} = n\times (n+1)\)

\(S_{n} = \sum_{i=1}^n i\times(i+1) = n\times(n+1)/2 + n\times(n+1)\times(2n+1)/6\)

 利用容斥思想,如当\(m=6\)时,有\(2\),\(3\)两个质因子。既然要求与\(m\)互素的下标的数之和,我们枚举素因子的倍数,二进制枚举最简的倍数。

 当枚举到\(2\)时,要删去\(2(2*1),4(2*2),6(2*3)\);当枚举到\(3\)时,要删去\(3(3*1),6(3*2)\);(注意到\(6\)被删了两次);当枚举到\(6\)时,要加上\(6\)哦。

容斥:

令\(tmp = tot*get\_num1(cnt)+tot*tot*get\_num2(cnt);\)

tmp = tot*get_num1(cnt)+tot*tot*get_num2(cnt);

若tot是偶数个质因子的倍数,答案加上这个数及其倍数的贡献,即tmp。

若tot是奇数个质因子的倍数,答案减去这个数及其倍数的贡献,即tmp。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = (LL)1e9 + 7;
LL n, m, inv2, inv6;
vector<int> ve;
LL inv(LL t){
return t == 1LL? 1LL: (MOD-MOD/t)*inv(MOD%t)%MOD;
}
LL get_num1(LL n){
return n*(n+1)%MOD*inv2%MOD;
}
LL get_num2(LL n){
return n*(n+1)%MOD*(2*n%MOD+1)%MOD*inv6%MOD;
}
int main(){
inv2 = inv(2), inv6 = inv(6);
while(~scanf("%lld%lld", &n, &m)){
ve.clear();
int tm = m;
for(int i = 2; (LL)i * i <= m && i <= n; ++i){
if(tm % i == 0){
ve.push_back(i);
while(tm % i == 0)tm /= i;
}
if(tm == 1)break;
}
if(tm != 1)ve.push_back(tm);
int len = ve.size(), state = 1 << len;
LL ans = (get_num1(n)+get_num2(n))%MOD;
ans = 0;
for(int i = 0; i < state; ++i){
LL tot = 1, cnt;
int num = 0;
for(int j = 0; j < len; ++j){
if(i&(1<<j)){
++num;
tot *= ve[j];
}
}
cnt = n/tot;
//printf("*%lld %lld %d\n", tot,cnt,num);
if(num % 2 == 0){
ans = (ans+ tot*tot%MOD*get_num2(cnt)%MOD+tot*get_num1(cnt)%MOD)%MOD;
}else{
ans = (ans- tot*tot%MOD*get_num2(cnt)%MOD-tot*get_num1(cnt)%MOD)%MOD;
ans = (ans + MOD)%MOD;
}
}
printf("%lld\n", ans);
}
return 0;
}

#### HDU6397容斥

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map> using namespace std; typedef long long LL; const int MXN = 3e5 + 6;
const int MXT = 1e5 + 5;
const int mod = 998244353; LL n, m, k;
LL f[MXN], invF[MXN];
LL niyuan(int t) {
return t == 1? 1: (mod-mod/t)*niyuan(mod%t)%mod;
}
LL ksm(LL a, int b) {
LL ans = 1;
while(b) {
if(b&1) ans = ans * a %mod;
b >>= 1;
a = a * a %mod;
}
return ans;
}
void init() {
f[0] = 1; invF[0] = 1;
for(int i = 1; i < MXN; ++i) f[i] = f[i-1] * i % mod;
//invF[MXN-1] = niyuan(f[MXN-1]);
invF[MXN-1] = ksm(f[MXN-1], mod-2);
for(int i = MXN-2; i >= 1; --i) invF[i] = invF[i+1]*(i+1)%mod;
}
LL COMB(LL n, LL m) {
if(n < m) return 0;
return f[n] * invF[m] % mod * invF[n-m] % mod;
}
int main(int argc, char const *argv[]) {
#ifndef ONLINE_JUDGE
//freopen("E://ADpan//in.in", "r", stdin);
#endif
init();
int tim;
scanf("%d", &tim);
while(tim--) {
scanf("%lld%lld%lld", &n, &m, &k);
LL ans = COMB(k+m-1,m-1), tmp;
for(int i = 1; i <= m; ++i) {
tmp = COMB(k+m-i*n-1, m-1) * COMB(m, i) % mod;
if(i & 1) ans = (ans - tmp + mod)%mod;
else ans = (ans + tmp)%mod;
}
printf("%lld\n", ans);
}
return 0;
} /*
字母xi=[0,n-1],问有多少个长度为m的单词,其和为k
*/

ACM-ICPC 2018 沈阳赛区网络预赛-B,F,G的更多相关文章

  1. ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)

    https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number

    Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...

  3. ACM-ICPC 2018 沈阳赛区网络预赛-D:Made In Heaven(K短路+A*模板)

    Made In Heaven One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. ...

  4. 图上两点之间的第k最短路径的长度 ACM-ICPC 2018 沈阳赛区网络预赛 D. Made In Heaven

    131072K   One day in the jail, F·F invites Jolyne Kujo (JOJO in brief) to play tennis with her. Howe ...

  5. ACM-ICPC 2018 沈阳赛区网络预赛 J树分块

    J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...

  6. ACM-ICPC 2018 沈阳赛区网络预赛 K. Supreme Number

    A prime number (or a prime) is a natural number greater than 11 that cannot be formed by multiplying ...

  7. ACM-ICPC 2018 沈阳赛区网络预赛 F. Fantastic Graph

    "Oh, There is a bipartite graph.""Make it Fantastic." X wants to check whether a ...

  8. Fantastic Graph 2018 沈阳赛区网络预赛 F题

    题意: 二分图 有k条边,我们去选择其中的几条 每选中一条那么此条边的u 和 v的度数就+1,最后使得所有点的度数都在[l, r]这个区间内 , 这就相当于 边流入1,流出1,最后使流量平衡 解析: ...

  9. ACM-ICPC 2018 沈阳赛区网络预赛 F Fantastic Graph(贪心或有源汇上下界网络流)

    https://nanti.jisuanke.com/t/31447 题意 一个二分图,左边N个点,右边M个点,中间K条边,问你是否可以删掉边使得所有点的度数在[L,R]之间 分析 最大流不太会.. ...

  10. ACM-ICPC 2018 沈阳赛区网络预赛 B Call of Accepted(表达式求值)

    https://nanti.jisuanke.com/t/31443 题意 给出一个表达式,求最小值和最大值. 表达式中的运算符只有'+'.'-'.'*'.'d',xdy 表示一个 y 面的骰子 ro ...

随机推荐

  1. php文件锁阻塞模式和非阻塞模式

    1.阻塞模式(如果其它进程已经加锁文件,当前进程会等其它进程解锁后继续执行) <?php $handle = fopen('lock.txt', 'r'); //锁定 if(flock($han ...

  2. spring data jpa 配置文件

    <?xml version="1.0" encoding="UTF-8"?><persistence xmlns="http://j ...

  3. 【Jenkins、sonar】

    1.Jenkins入门(一)安装Jenkins 2.Jenkins入门(二)部署java项目 3.Jenkins远程部署SpringBoot应用 4.配置sonar.jenkins进行持续审查 5.S ...

  4. HTML之web项目的目录结构

    文件夹树注解 htmls    html一个文件放除去index.html外的其他页面文件. imgs    存放所有的图片文件:.png..jpg..jpeg.壁纸等. 示例:icon.png.ho ...

  5. mongodb副本集(选举,节点设置,读写分离设置)

    1.相对于传统主从模式的优势 传统的主从模式,需要手工指定集群中的Master.如果Master发生故障,一般都是人工介入,指定新的Master.这个过程对于应用一般不是透明的,往往伴随着应用重新修改 ...

  6. 关于swiper动态更改,无法更新的悖论

    关于swiper动态更改,无法更新的悖论 以前都觉得swiper的使用很简单,那是因为使用swiper时都是写的数据,按照官网上介绍直接初始化swiper,随便丢一个地方初始化就ok了,但是在很多需求 ...

  7. 互斥锁Demo

    #include <stdio.h> #include <pthread.h> pthread_t work1Id; pthread_t work2Id; ; ; pthrea ...

  8. VS下使用VIM, Visual Studio 安装 VSvim插件 配置 及使用

    简介 VIM是一款很高效的编辑工具,所幸的是VS2012以后支持VIM的插件:VsVim.下面介绍插件的安装.配置及简单使用. 1. 下载安装 去官网下载,双击直接安装后,重新打开VS. https: ...

  9. 10 个轻松学会 CSS3 的优秀在线资源

    本文包揽 CSS 的所有关键点,并且引入了最新的 CSS3 版本.这个先进的技术提供超级多的新标签和属性,使得 Web 设计构建创新更简单,帮助开发者创建具有新趋势,带有漂亮布局的 Web 页面.随着 ...

  10. .net 委托 +lamda表达式

    1.委托与类同级 想当于定义了一个类型 如 delegate int Sum(int a, int b);// 在声明类之前声明 2.这里可以在类里写个函数 public int sumAB(int ...