[Codeforces 1228E]Another Filling the Grid(组合数+容斥)
解题思路:
容斥一下好久可以得到式子
\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)复杂度是\(o(n^2logn)\)但是还能继续化简,
\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j+ni}k^{(n-j)(n-i)}\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j}k^{(n-j)(n-i)}\)
由二项式定理有
\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}[k^{n-i}-(k-1)^{n-i}]^n\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i[k^{n-i}(k-1)^i-(k-1)^n]^n\)
就能愉快的\(O(nlogn)\)算出答案了
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
// clock_t c1 = clock();
// std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 4e3 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (1LL * ans * a) % MOD;
a = (1LL * a * a) % MOD;
b >>= 1;
}
return ans;
}
int c[305][305];
ll ksm1[305], ksm2[305];
int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
for (int i = 2; i <= n; i++)
{
c[i][0] = 1;
for (int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
ksm1[0] = ksm2[0] = 1;
for (int i = 1; i <= n; i++)
ksm1[i] = (ksm1[i - 1] * k) % MOD, ksm2[i] = (ksm2[i - 1] * (k - 1)) % MOD;
ll ans = 0;
ll t = 1;
for (int i = 0; i <= n; i++)
{
ans += t * c[n][i] * quick_pow((ksm1[n - i] * ksm2[i] - ksm2[n]) % MOD, n) % MOD;
t *= -1;
ans %= MOD;
}
printf("%lld\n", (ans % MOD + MOD) % MOD);
return 0;
}
[Codeforces 1228E]Another Filling the Grid(组合数+容斥)的更多相关文章
- codeforces#1228E. Another Filling the Grid(容斥定理,思维)
题目链接: https://codeforces.com/contest/1228/problem/E 题意: 给n*n的矩阵填数,使得每行和每列最小值都是1 矩阵中可以填1到$k$的数 数据范围: ...
- [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)
[Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...
- Codeforces 1228E. Another Filling the Grid
传送门 看到 $n=250$ 显然考虑 $n^3$ 的 $dp$ 设 $f[i][j]$ 表示填完前 $i$ 行,目前有 $j$ 列的最小值是 $1$ 的合法方案数 那么对于 $f[i][j]$ ,枚 ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- Codeforces 100548F - Color (组合数+容斥)
题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...
- Codeforces Round #345 (Div. 1) A - Watchmen 容斥
C. Watchmen 题目连接: http://www.codeforces.com/contest/651/problem/C Description Watchmen are in a dang ...
- BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- CodeForces 559C Gerald and Gia (格路+容斥+DP)
CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...
随机推荐
- Struts2标签库常用标签(转)
struts2标签讲解 要使用Struts2的标签,只需要在JSP页面添加如下一行定义即可:<%@ taglib prefix="s" uri="/struts-t ...
- 第二阶段:4.商业需求文档MRD:1.PRD-产品功能列表
这就是对功能清单的梳理已经优先级筛选
- 从零开始のcocos2dx生活(四)ActionManager
文章目录 初始化构造函数 析构函数 删除哈希元素 分配存放动作对象的空间 通过索引移除动作 暂停动作 恢复动作 暂停所有的动作 恢复所有的动作 添加动作 移除所有的动作 移除target中的所有动作 ...
- Python 打包的现状:包的三种类型
英文 | The state of Python Packaging[1] 原作 | BERNAT GABOR 译者 | 豌豆花下猫 声明 :本文获得原作者授权翻译,转载请保留原文出处,请勿用于商业或 ...
- Atlas 读写分离
1.前置条件 需要配置好mysql 主从 主库:192.168.28.137:16205 从库:192.168.28.135:16205 Atlas:192.168.28.139 2.Atlas 部署 ...
- 7.netty内存管理-ByteBuf
ByteBuf ByteBuf是什么 ByteBuf重要API read.write.set.skipBytes mark和reset duplicate.slice.copy retain.rele ...
- 更换EMC VNX系列存储故障硬盘的检查步骤
更换EMC VNX系列存储故障硬盘的检查步骤 VNX1代(VNX5300,VNX5500,VNX5700,VNX7500和VNX2代(VNX5400,5600,5800和VNX7600,8000)有区 ...
- MATLAB实例:PCA(主成成分分析)详解
MATLAB实例:PCA(主成成分分析)详解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 主成成分分析 2. MATLAB解释 详细信息请看: ...
- ACM北大暑期课培训第六天
今天讲了DFA,最小生成树以及最短路 DFA(接着昨天讲) 如何高效的构造前缀指针: 步骤为:根据深度一一求出每一个节点的前缀指针.对于当前节点,设他的父节点与他的边上的字符为Ch,如果他的父节点的前 ...
- Redis内存碎片清理
当Redis中清理了大量的Key之后原先Redis申请的内存(used_memory_rss)将继续持有而不会释放,此时查看内存信息将会看到存在大量的内存碎片.那么,Redis的内存碎片可以清理么,该 ...