题目链接

解题思路:

容斥一下好久可以得到式子

\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)复杂度是\(o(n^2logn)\)但是还能继续化简,

\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j+ni}k^{(n-j)(n-i)}\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j}k^{(n-j)(n-i)}\)

由二项式定理有

\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}[k^{n-i}-(k-1)^{n-i}]^n\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i[k^{n-i}(k-1)^i-(k-1)^n]^n\)

就能愉快的\(O(nlogn)\)算出答案了

#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
// clock_t c1 = clock();
// std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 4e3 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (1LL * ans * a) % MOD;
a = (1LL * a * a) % MOD;
b >>= 1;
}
return ans;
}
int c[305][305];
ll ksm1[305], ksm2[305];
int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
for (int i = 2; i <= n; i++)
{
c[i][0] = 1;
for (int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
ksm1[0] = ksm2[0] = 1;
for (int i = 1; i <= n; i++)
ksm1[i] = (ksm1[i - 1] * k) % MOD, ksm2[i] = (ksm2[i - 1] * (k - 1)) % MOD;
ll ans = 0;
ll t = 1;
for (int i = 0; i <= n; i++)
{
ans += t * c[n][i] * quick_pow((ksm1[n - i] * ksm2[i] - ksm2[n]) % MOD, n) % MOD;
t *= -1;
ans %= MOD;
}
printf("%lld\n", (ans % MOD + MOD) % MOD);
return 0;
}

[Codeforces 1228E]Another Filling the Grid(组合数+容斥)的更多相关文章

  1. codeforces#1228E. Another Filling the Grid(容斥定理,思维)

    题目链接: https://codeforces.com/contest/1228/problem/E 题意: 给n*n的矩阵填数,使得每行和每列最小值都是1 矩阵中可以填1到$k$的数 数据范围: ...

  2. [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)

    [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...

  3. Codeforces 1228E. Another Filling the Grid

    传送门 看到 $n=250$ 显然考虑 $n^3$ 的 $dp$ 设 $f[i][j]$ 表示填完前 $i$ 行,目前有 $j$ 列的最小值是 $1$ 的合法方案数 那么对于 $f[i][j]$ ,枚 ...

  4. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  5. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  6. Codeforces Round #345 (Div. 1) A - Watchmen 容斥

    C. Watchmen 题目连接: http://www.codeforces.com/contest/651/problem/C Description Watchmen are in a dang ...

  7. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  8. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  9. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

随机推荐

  1. OSI协议介绍

    应用层 为网络用户或应用程序提供各种服务,代表协议有Telnet,FTP,HTTP,SNMP等 表示层 负责所传输的信的语法和语义,用于处理再多个通信系统之间交换信息的表示方式,代表协议有ASCII, ...

  2. 0007 表单标签(form、select)

    目标: 能写出最常用的注册类表单 能说出input表单常见属性 现实中的表单,类似我们去银行办理信用卡填写的单子. 如下图 作用: 表单目的是为了收集用户信息. 在我们网页中, 我们也需要跟用户进行交 ...

  3. 通过脚本实现对web的健康检查

    前面的文章中(https://www.cnblogs.com/zyxnhr/p/10707932.html),通过nginx的第三方模块实现对web端的一个监控,现在通过一个脚本实现对第三方的监控 脚 ...

  4. 【题解】LOJ6060 Set(线性基)

    [题解]LOJ6060 Set(线性基) orz gql 设所有数的异或和为\(S\),答案是在\(\max (x_1+S\and x_1)\)的前提下\(\min x_1\)输出\(x_1\) 转换 ...

  5. python的一些高阶用法

    map的用法 def fn(x): return x*2 L1 = [1,2,3,4,5,6] L2 = list(map(fn,L1)) L2 [2, 4, 6, 8, 10, 12] 通过上面的运 ...

  6. Linux常用命令大全(四)

    Linux常用命令大全(四) shell的特点 ☆组合新命令 ☆提供了文件名扩展字符 ☆直接使用shell的内置命令 ☆灵活地使用数据流 ☆结构化的程序模块 ☆在后台执行命令 ☆可配置的环境 ☆高级的 ...

  7. 07Shell数组

    Shell 数组变量 普通数组:只能使用整数作为数组索引 关联数组:可以使用字符串作为数组索引 普通数组 定义数组 方法1: 一次赋一个值 数组名[索引]=变量值 示例 # array1[0]=pea ...

  8. Revealjs网页版PPT让你复制粘贴另类装逼,简洁优雅又低调,不懂编程也看过来

    Revealjs网页版PPT让你复制粘贴另类装逼,简洁优雅又低调,不懂编程也看过来 要了解一个新知识我们可以从三个方面入手:是什么,有什么用,怎么用.下面我们就从这三个方面进行讲解Reveal.js噢 ...

  9. SpringCloudAlibaba通过jib插件打包发布到docker仓库

    序言 在SpringBoot项目部署的时候,我了解到了Jib插件的强大,这个插件可以快速构建镜像发布到我们的镜像仓库当中去.于是我打算在毕设当中加上这个功能,并且整合到github actions中去 ...

  10. Spring中Bean的实例化与DI的过程

    引言 前文我们介绍了关于如何学习Spring的源码以及解析了spring中加载配置文件注册Beandefinition的过程.今天我们继续学习DI的过程. 创建实例和DI过程 IOC和DI都是对spr ...