题目链接

解题思路:

容斥一下好久可以得到式子

\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)复杂度是\(o(n^2logn)\)但是还能继续化简,

\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j+ni}k^{(n-j)(n-i)}\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j}k^{(n-j)(n-i)}\)

由二项式定理有

\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}[k^{n-i}-(k-1)^{n-i}]^n\)

\(=\sum_{i=0}^{n}(-1)^iC_n^i[k^{n-i}(k-1)^i-(k-1)^n]^n\)

就能愉快的\(O(nlogn)\)算出答案了

#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
// clock_t c1 = clock();
// std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 4e3 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (1LL * ans * a) % MOD;
a = (1LL * a * a) % MOD;
b >>= 1;
}
return ans;
}
int c[305][305];
ll ksm1[305], ksm2[305];
int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
for (int i = 2; i <= n; i++)
{
c[i][0] = 1;
for (int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
ksm1[0] = ksm2[0] = 1;
for (int i = 1; i <= n; i++)
ksm1[i] = (ksm1[i - 1] * k) % MOD, ksm2[i] = (ksm2[i - 1] * (k - 1)) % MOD;
ll ans = 0;
ll t = 1;
for (int i = 0; i <= n; i++)
{
ans += t * c[n][i] * quick_pow((ksm1[n - i] * ksm2[i] - ksm2[n]) % MOD, n) % MOD;
t *= -1;
ans %= MOD;
}
printf("%lld\n", (ans % MOD + MOD) % MOD);
return 0;
}

[Codeforces 1228E]Another Filling the Grid(组合数+容斥)的更多相关文章

  1. codeforces#1228E. Another Filling the Grid(容斥定理,思维)

    题目链接: https://codeforces.com/contest/1228/problem/E 题意: 给n*n的矩阵填数,使得每行和每列最小值都是1 矩阵中可以填1到$k$的数 数据范围: ...

  2. [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)

    [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...

  3. Codeforces 1228E. Another Filling the Grid

    传送门 看到 $n=250$ 显然考虑 $n^3$ 的 $dp$ 设 $f[i][j]$ 表示填完前 $i$ 行,目前有 $j$ 列的最小值是 $1$ 的合法方案数 那么对于 $f[i][j]$ ,枚 ...

  4. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  5. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  6. Codeforces Round #345 (Div. 1) A - Watchmen 容斥

    C. Watchmen 题目连接: http://www.codeforces.com/contest/651/problem/C Description Watchmen are in a dang ...

  7. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  8. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  9. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

随机推荐

  1. slim中的参数获取

    官方文档中对于get和post的参数有以下获取方式 $app->get('/', function (Request $req, Response $res, $args = []) { $my ...

  2. 如何在ClickOnce 应用中使用 GitVersion

    https://github.com/GitTools/GitVersion/issues/1153 I'm using GitVersion in an internal ClickOnce app ...

  3. 第二阶段:1.流程图:9.excel绘制甘特图

    后面的框都是日期 可以以一个月为周期计算或者周或者... 因为产品经理应该严格把控产品的时间 因此甘特图特别有必要 注意:任务拆解的越细 把控度越强 然后对格式进行设置 注意时间下面可以用颜色填充来表 ...

  4. ABP-AsyncLocal的使用

    1.与AsyncLocal对应的是ThreadLocal 2.两种类型 初始赋值 AsyncLocalString.Value = new List { "1" }; AsyncL ...

  5. BuilderPattern(建造者模式)-----Java/.Net

    建造者模式(Builder Pattern)使用多个简单的对象一步一步构建成一个复杂的对象.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式

  6. 「UVA10810」Ultra-QuickSort 解题报告

    题面 看不懂?! 大概的意思就是: 给出一个长度为n的序列,然后每次只能交换相邻的两个数,问最小需要几次使序列严格上升 不断读入n,直到n=0结束 思路: 交换相邻的两个数,这不就类似冒泡排序吗?但是 ...

  7. Netty快速入门(06)Netty介绍

    前面简单的介绍了Java I/O 和NIO,写了示例程序. Java I/O是阻塞的,为了让它支持多个并发,就要针对每个链接启动线程,这种方式的结果就是在海量链接的情况下,会创建海量的线程,就算用线程 ...

  8. C语言之数组用法总结

    一维数组的定义:1.数组的数据类型:每一元素占内存空间的字节数.2.数组的存储类型:内存的动态. 静态存储区或CPU的寄存器.3.一维数组在内存中占用的字节数为:数组长度X sizeof (基类型). ...

  9. Java 中的四种权限修饰符

    * * private: * Java语言中对访问权限限制的最窄的修饰符,一般称之为“私有的”. * 被其修饰的属性以及方法只能被该类的对象 访问,其子类不能访问,更不能允许跨包访问. * * def ...

  10. P1551 亲戚 并查集

    P1551 亲戚 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描述 规定:x和y是亲戚,y和z是亲戚,那么 ...