[Codeforces 1228E]Another Filling the Grid(组合数+容斥)
解题思路:
容斥一下好久可以得到式子
\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)复杂度是\(o(n^2logn)\)但是还能继续化简,
\(\sum_{i=0}^{n}\sum_{j=0}^{n}(-1)^{i+j}C_n^iC_n^j(k-1)^{ni+nj-ij}k^{n^2-(ni+nj-ij)}\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j+ni}k^{(n-j)(n-i)}\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}\sum_{j=0}^{n}(-1)^jC_n^j(k-1)^{(n-i)j}k^{(n-j)(n-i)}\)
由二项式定理有
\(=\sum_{i=0}^{n}(-1)^iC_n^i(k-1)^{ni}[k^{n-i}-(k-1)^{n-i}]^n\)
\(=\sum_{i=0}^{n}(-1)^iC_n^i[k^{n-i}(k-1)^i-(k-1)^n]^n\)
就能愉快的\(O(nlogn)\)算出答案了
#include <bits/stdc++.h>
using namespace std;
/* freopen("k.in", "r", stdin);
freopen("k.out", "w", stdout); */
// clock_t c1 = clock();
// std::cerr << "Time:" << clock() - c1 <<"ms" << std::endl;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#define de(a) cout << #a << " = " << a << endl
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, a, n) for (int i = n; i >= a; i--)
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
typedef vector<int, int> VII;
#define inf 0x3f3f3f3f
const ll INF = 0x3f3f3f3f3f3f3f3f;
const ll MAXN = 4e3 + 7;
const ll MAXM = 1e6 + 7;
const ll MOD = 1e9 + 7;
const double eps = 1e-6;
const double pi = acos(-1.0);
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (1LL * ans * a) % MOD;
a = (1LL * a * a) % MOD;
b >>= 1;
}
return ans;
}
int c[305][305];
ll ksm1[305], ksm2[305];
int main()
{
ll n, k;
scanf("%lld%lld", &n, &k);
c[0][0] = 1;
c[1][0] = c[1][1] = 1;
for (int i = 2; i <= n; i++)
{
c[i][0] = 1;
for (int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
ksm1[0] = ksm2[0] = 1;
for (int i = 1; i <= n; i++)
ksm1[i] = (ksm1[i - 1] * k) % MOD, ksm2[i] = (ksm2[i - 1] * (k - 1)) % MOD;
ll ans = 0;
ll t = 1;
for (int i = 0; i <= n; i++)
{
ans += t * c[n][i] * quick_pow((ksm1[n - i] * ksm2[i] - ksm2[n]) % MOD, n) % MOD;
t *= -1;
ans %= MOD;
}
printf("%lld\n", (ans % MOD + MOD) % MOD);
return 0;
}
[Codeforces 1228E]Another Filling the Grid(组合数+容斥)的更多相关文章
- codeforces#1228E. Another Filling the Grid(容斥定理,思维)
题目链接: https://codeforces.com/contest/1228/problem/E 题意: 给n*n的矩阵填数,使得每行和每列最小值都是1 矩阵中可以填1到$k$的数 数据范围: ...
- [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)
[Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...
- Codeforces 1228E. Another Filling the Grid
传送门 看到 $n=250$ 显然考虑 $n^3$ 的 $dp$ 设 $f[i][j]$ 表示填完前 $i$ 行,目前有 $j$ 列的最小值是 $1$ 的合法方案数 那么对于 $f[i][j]$ ,枚 ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- Codeforces 100548F - Color (组合数+容斥)
题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...
- Codeforces Round #345 (Div. 1) A - Watchmen 容斥
C. Watchmen 题目连接: http://www.codeforces.com/contest/651/problem/C Description Watchmen are in a dang ...
- BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- CodeForces 559C Gerald and Gia (格路+容斥+DP)
CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...
随机推荐
- 第二阶段:2.商业需求文档MRD:1.M版本管理
版本管理的例子.V=Version.注意大中小版本的区分.V1.2.2 第一个数字1就是大版本 中间的2就是中版本 末尾的2就是小版本.大版本就是方向的变更,比如我的用户之前主要是面向男性,现在要面向 ...
- TypeScript躬行记(7)——命名空间
TypeScript中的命名空间可将那些具有内在联系的接口.类或对象等代码组织在一起,既能隔离作用域,也能避免命名冲突,并且使得代码结构清晰,更易追踪.在命名空间内部,所有实体部分默认都是私有的,需要 ...
- 互联网项目中mysql应该选什么事务隔离级别
引言 开始我们的内容,相信大家一定遇到过下面的一个面试场景 面试官:“讲讲mysql有几个事务隔离级别?” 你:“读未提交,读已提交,可重复读,串行化四个!默认是可重复读” 面试官:“为什么mysql ...
- 使用app-inspector时报错connect ECONNREFUSED 127.0.0.1:8001的解决方案
在使用 app-inspector -u udid时,报错如图所示 输入如下命令即可解决 npm config set proxy null 再次启动app-inspector即可成功
- mysql锁及四种事务隔离级别笔记
前言 数据库是一个共享资源,为了充分利用数据库资源,发挥数据 库共享资源的特点,应该允许多个用户并行地存取数据库.但这样就会产生多个用户程序并 发存取同一数据的情况,为了避免破坏一致性,所以必须提供并 ...
- tomcat启动慢问题
sed -i 's/securerandom\.source\=file\:\/dev\/random/securerandom\.source\=file\:\/dev\/urandom/g' $J ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
- Linux 学习笔记 2 Centos 安装与网络的配置以及VI编辑器的使用
前言 当然,还是觉得Centos 在众多的Linux 发行版中,还是很有地位的,好多的服务器大多沿用的都是一代的Centos 因为它开源(这是废话)而且稳定,这才是服务器沿用的最重要的一项指标. 镜像 ...
- Go并发编程
概述 简而言之,所谓并发编程是指在一台处理器上"同时"处理多个任务. 随着硬件的发展,并发程序变得越来越重要.Web服务器会一次处理成千上万的请求.平板电脑和手机app在渲染用户画 ...
- Spring学习记录1——IoC容器
IoC容器 1.1 IoC概述 Ioc(Inverse of Control,控制反转)是Spring容器的内核.对于软件来说,即某一接口具体实现类的选择控制权从调用类中移除,转交给第三方决定,即由 ...