2019牛客多校第四场J free 最短路
free
题意
给出一个带权联通无向图,你需要从s走到t,你可以选择k条变让他们的权值为0问从s到t的最小权值是多少?
分析
思考一下,如果不带k条白嫖这个条件,那么这就是一个简单的dji就搞定了,我们再来看k的范围1000 直接乘上dji的复杂度还能过,空间也开的下,所以直接一个二维dji就搞定了
#include<bits/stdc++.h>
#include<vector>
#include<algorithm>
using namespace std;
#define pb push_back
#define F first
#define S second
#define mkp make_pair
const int maxn=1e3+5;
#define int ll
typedef long long ll;
const int inf=1e10;
int n,m,s,t,k,x,y,v;
int head[maxn],dist[maxn][maxn],vis[maxn][maxn];
struct ZZ{
int to,v,next;
}edge[maxn*4];
int cnt=0;
void add(int x,int y,int v){
edge[cnt].to=y;
edge[cnt].v=v;
edge[cnt].next=head[x];
head[x]=cnt++;
}
struct Node{
int v,id,cishu;
Node(int _v,int _id,int _cishu):v(_v),id(_id),cishu(_cishu){}
bool operator<(const Node&a)const {
return v>a.v;
}
};
priority_queue<Node>q;
void dij(){
for(int i=0;i<=n;i++){
for(int j=0;j<=k;j++){
vis[i][j]=0;
dist[i][j]=inf;
}
}
while(!q.empty())q.pop();
dist[s][k]=0;
q.push(Node(0,s,k));
while(!q.empty()){
auto tmp=q.top();
q.pop();
if(vis[tmp.id][tmp.cishu])continue;
vis[tmp.id][tmp.cishu]=1;
for(int i=head[tmp.id];i!=-1;i=edge[i].next){
int y=edge[i].to;
if(!vis[y][tmp.cishu]&&dist[y][tmp.cishu]>dist[tmp.id][tmp.cishu]+edge[i].v){
dist[y][tmp.cishu]=dist[tmp.id][tmp.cishu]+edge[i].v;
q.push(Node(dist[y][tmp.cishu],y,tmp.cishu));
}
if(tmp.cishu-1>=0&&!vis[y][tmp.cishu-1]&&dist[y][tmp.cishu-1]>dist[tmp.id][tmp.cishu]){
dist[y][tmp.cishu-1]=dist[tmp.id][tmp.cishu];
q.push(Node(dist[y][tmp.cishu-1],tmp.id,tmp.cishu-1));
}
}
}
ll ans=inf;
for(int i=0;i<=k;i++)ans=min(ans,dist[t][i]);
printf("%lld\n",ans);
//cout<<dist[t][0]<<endl;
}
int32_t main(){
scanf("%lld%lld%lld%lld%lld",&n,&m,&s,&t,&k);
for(int i=0;i<=n;i++)head[i]=-1;
for(int i=0;i<m;i++){
scanf("%lld%lld%lld",&x,&y,&v);
add(x,y,v);
add(y,x,v);
// add(x,y,-1);
// add(y,x,-1);
}
dij();
return 0;
}
2019牛客多校第四场J free 最短路的更多相关文章
- 2019牛客多校第四场J free——分层图&&最短路
题意 一张无向图,每条边有权值,可以选择不超过 $k$ 条路使其权值变成0,求 $S$ 到 $T$ 的最短路.(同洛谷 P4568) 分析 首先,分层图最短路可以有效解决这种带有 「阶段性」的最短路, ...
- 牛客多校第四场 J Free 最短路
题意: 求最短路,但是你有k次机会可以把路径中某条边的长度变为0. 题解: 跑k+1次迪杰斯特拉,设想有k+1组dis数组和优先队列,第k组就意味着删去k条边的情况,每次松弛操作,松弛的两点i,j和距 ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
- 2019牛客多校第四场A meeting——树的直径
题意: 一颗 $n$ 个节点的树上标有 $k$ 个点,找一点使得到 $k$ 个关键结点的最大距离最小. 分析: 问题等价于求树的直径,最小距离即为直径除2向上取整. 有两种求法,一是动态规划,对于每个 ...
- [2019牛客多校第四场][G. Tree]
题目链接:https://ac.nowcoder.com/acm/contest/884/G 题目大意:给定一个树\(A\),再给出\(t\)次询问,问\(A\)中有多少连通子图与树\(B_i\)同构 ...
- 2019牛客多校第四场D-triples I 贪心
D-triples 题意 给你一个\(n\),问至少有几个数或运算起来可以等于\(n\),并且输出数量和这个几个数.题目说明给的\(n\)一定符合条件(不会输出\(n= 1\) 之类不存在情况). 思 ...
- 2019牛客多校第四场C-sequence(单调栈+线段树)
sequence 题目传送门 解题思路 用单调栈求出每个a[i]作为最小值的最大范围.对于每个a[i],我们都要乘以一个以a[i]为区间内最小值的对应的b的区间和s,如果a[i] > 0,则s要 ...
随机推荐
- 为什么MYSQL分页时使用limit+ order by会出现数据重复问题
问题描述: MYSQL采用limit进行翻页查询时,搭配order by ,在翻到第二页的时候可能会出现第一页的数据, 示例sql如下: select a,b from c where d = ' ...
- Win10如何设置休眠选项(关于睡眠、休眠、快速启动这几个伪关机功能如何设置更适合笔记本电脑?)
· Win10如何设置休眠选项(关于睡眠.休眠.快速启动这几个伪关机功能如何设置更适合笔记本电脑?) 应用场景 升级正式版win10以后,发现竟然没有休眠选项,从电源管理器里面也没有找到,有时候有些重 ...
- Winform递归绑定树节点
/// <summary> /// 绑定树节点 /// </summary> /// <param name="pid"></param& ...
- Dubbo的SPI机制与JDK机制的不同及原理分析
从今天开始,将会逐步介绍关于DUbbo的有关知识.首先先简单介绍一下DUbbo的整体概述. 概述 Dubbo是SOA(面向服务架构)服务治理方案的核心框架.用于分布式调用,其重点在于分布式的治理. 简 ...
- MySql 中IFNULL、ISNULL、NULLIF用法(数据库判空)
来源:http://blog.csdn.net/a466350665/article/details/52994761 http://blog.csdn.net/xingyu0806/article/ ...
- SDOI2010 粟粟的书架 lg2468(可持久化,前缀和)
题面见https://www.luogu.org/problemnew/show/P2468 然后这道题属于合二为一题,看一眼数据范围就能发现 首先我们先考虑50分,二维前缀和维护一下(反正我不记得公 ...
- Docker镜像加速-配置阿里云镜像仓库
Docker默认远程仓库是https://hub.docker.com/ 比如我们下载一个大点的东西,龟速 由于是国外主机,类似Maven仓库,慢得一腿,经常延迟,破损: 所以我们一般都是配置国内镜像 ...
- android获取系统信息
连接手机,adb shell 进入 Android Shell 模式,输入 getprop 获取系统属性值 通过上面方法拿到属性名,然后通过下面方法获取到系统的属性值 /** * 获取build.pr ...
- Python之tcp server模拟Http通信
1.python tcp server代码: import socket def main(): tcp_server_socket = socket.socket(socket.AF_INET, s ...
- 3ds Max File Format (Part 4: The first useful data; Scene, AppData, Animatable)
The most interesting part of this file is, evidently, the Scene. Opening it up in the chunk parser, ...