UVA 10891 Game of Sum(DP)
This is a two player game. Initially there are n integer numbers in an array and players A and B get chance to take them alternatively. Each player can take one or more numbers from the left or right end of the array but cannot take from both ends at a time. He can take as many consecutive numbers as he wants during his time. The game ends when all numbers are taken from the array by the players. The point of each player is calculated by the summation of the numbers, which he has taken. Each player tries to achieve more points from other. If both players play optimally and player A starts the game then how much more point can player A get than player B?
Input
The input consists of a number of cases. Each case starts with a line specifying the integer n (0 < n ≤100), the number of elements in the array. After that, nnumbers are given for the game. Input is terminated by a line where n=0.
Output
For each test case, print a number, which represents the maximum difference that the first player obtained after playing this game optimally.
题目大意:给n个数,两个人轮流取数,可以从左往右或从右往左取任意多个。两个人都希望自己的取得的数的总和尽量大,都采取最优策略,问第一个人能比第二个人取得的数多多少。
思路:很容易可以想到一个$O(n^3)$的DP,用dp[i][j]代表只剩下a[i..j]的数,先手可以取得的最大值,此时后手取得的最大值为sum[i..j] - dp[i][j]。
那么状态转移方程为:dp[i][j] = max(sum[i..j], sum[i..j] - min(dp[i+1][j], dp[i+2][j]……), sum[i..j] - min(dp[i][j - 1], dp[i, j - 2])。
输出结果为2 * dp[1][n] - sum[1..n]。
代码(0.026S):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = ; int dp[MAXN][MAXN];
int a[MAXN], sum[MAXN];
int n; int main() {
while(scanf("%d", &n) != EOF && n) {
for(int i = ; i <= n; ++i) scanf("%d", a + i);
for(int i = ; i <= n; ++i) sum[i] = sum[i - ] + a[i];
for(int k = ; k < n; ++k) {
for(int i = ; i + k <= n; ++i) {
int j = i + k;
dp[i][j] = sum[j] - sum[i - ];
for(int p = i + ; p <= j; ++p) dp[i][j] = max(dp[i][j], sum[j] - sum[i - ] - dp[p][j]);
for(int p = j - ; p >= i; --p) dp[i][j] = max(dp[i][j], sum[j] - sum[i - ] - dp[i][p]);
}
}
printf("%d\n", * dp[][n] - sum[n]);
}
}
这个DP还有优化的余地,观察状态转移方程可以发现,dp[i][j]使用了min(dp[i+1][j], dp[i+2][j]……),而dp[i+1][j]=min(dp[i+2][j], dp[i+3][j]……),有重复的部分。
于是我们可以用l[i][j]记录max(dp[i][j], dp[i+1][j], dp[i+2][j]……),即从左往右取的后手最小值,则sum[i..j] - min(dp[i+1][j], dp[i+2][j]……)可以写成sum[i..j]-l[i+1][j]。每次更新l[i][j] = min(dp[i][j], l[i+1][j])。
同理用r[i][j]记录从右往左取的后手最小值。
至此DP优化至$O(n^2)$。
代码(0.015S):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = ; int dp[MAXN][MAXN];
int l[MAXN][MAXN], r[MAXN][MAXN];
int a[MAXN], sum[MAXN];
int n; int main() {
while(scanf("%d", &n) != EOF && n) {
for(int i = ; i <= n; ++i) scanf("%d", a + i);
for(int i = ; i <= n; ++i) sum[i] = sum[i - ] + a[i];
for(int k = ; k < n; ++k) {
for(int i = ; i + k <= n; ++i) {
int j = i + k;
l[i][j] = r[i][j] = dp[i][j] = sum[j] - sum[i - ];
if(i != j) {
dp[i][j] = max(dp[i][j], sum[j] - sum[i - ] - l[i + ][j]);
dp[i][j] = max(dp[i][j], sum[j] - sum[i - ] - r[i][j - ]);
l[i][j] = min(dp[i][j], l[i + ][j]);
r[i][j] = min(dp[i][j], r[i][j - ]);
}
}
}
printf("%d\n", * dp[][n] - sum[n]);
}
}
UVA 10891 Game of Sum(DP)的更多相关文章
- uva 10891 Game of Sum(区间dp)
题目连接:10891 - Game of Sum 题目大意:有n个数字排成一条直线,然后有两个小伙伴来玩游戏, 每个小伙伴每次可以从两端(左或右)中的任意一端取走一个或若干个数(获得价值为取走数之和) ...
- UVA 10891 Game of Sum(区间DP(记忆化搜索))
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA - 10891 Game of Sum (区间dp)
题意:AB两人分别拿一列n个数字,只能从左端或右端拿,不能同时从两端拿,可拿一个或多个,问在两人尽可能多拿的情况下,A最多比B多拿多少. 分析: 1.枚举先手拿的分界线,要么从左端拿,要么从右端拿,比 ...
- Max Sum (dp)
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. F ...
- URAL 1146 Maximum Sum(DP)
Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...
- UVA - 10891 Game of Sum 区间DP
题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...
- HDU 1003 Max Sum(DP)
点我看题目 题意 : 就是让你从一个数列中找连续的数字要求他们的和最大. 思路 : 往前加然后再判断一下就行. #include <iostream> #include<stdio. ...
- 【UVa】Partitioning by Palindromes(dp)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=27&page=sh ...
- 【noi 2.6_1481】Maximum sum(DP)
题意:求不重叠的2段连续和的最大值. 状态定义f[i]为必选a[i]的最大连续和,mxu[i],mxv[i]分别为前缀和后缀的最大连续和. 注意:初始化f[]为0,而max值为-INF.要看好数据范围 ...
随机推荐
- 【转】java正则表达式
在Sun的Java JDK 1.40版本中,Java自带了支持正则表达式的包,本文就抛砖引玉地介绍了如何使用java.util.regex包. 可粗略估计一下,除了偶尔用Linux的外,其他Linu ...
- sublime修改TAB缩进
菜单:Preferences ->Settings – User 添加配置信息: "tab_size": 4, "translate_tabs_to_spaces& ...
- java编程技巧
欢迎提出建议指出错误互相交流. 1.统计对象数量,比如统计一共发射了多少颗子弹. public class Bullet { public static int count = 0; public B ...
- LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分
题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...
- Block作为property属性实现页面之间传值(代替Delegate代理与协议结合的方法)
需求:在ViewController中,点击Button,push到下一个页面NextViewController,在NextViewController的输入框TextField中输入一串字符,返回 ...
- Selenium2学习-006-WebUI自动化实战实例-004-解决 Chrome 浏览器证书提示:--ignore-certificate-errors
此文主要讲述 Java 运行 Selenium 脚本时,如何消除 Chrome 浏览器启动后显示的证书错误报警提示,附带 Chrome 参数使浏览器最大化的参数. 希望能对初学 Selenium2 W ...
- linux压缩解压
zip压缩文件 zip -r filename.zip filesdir zip -r filename.zip file1 file2 file3 /usr/work/school //将file1 ...
- angularJs的工具方法
- procps包里面的sysctl命令
procps包里面的sysctl命令 --http://www.cnblogs.com/createyuan/p/3740917.html?utm_source=tuicool&utm_med ...
- Android SnapHelper
转载请注明出处:http://blog.csdn.net/crazy1235/article/details/53386286 SnapHelper 是 Android Support Library ...