转自:http://blog.csdn.net/lanbing510/article/details/40411877

有博主翻译了这篇论文:http://blog.csdn.net/roamer_nuptgczx/article/details/45790415

Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters
 
 
 
Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update
 
 
 
Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold
 
2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold
 
3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation
 
 
 
 
Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse
templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that
trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of
initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF
 
//补充
Concluding Remarks
1.background information is critical for effective tracking. 
2.local models are important for tracking 
3.motion model or dynamic model is crucial for object tracking, especially when the motion of target
is large or abrupt

Good location prediction based on the dynamic model could reduce the search range and thus improve the tracking efficiency and robustness. 

 
 
 
Dataset

 
对应网站

 
一篇教程:http://blog.csdn.net/carrierlxksuper/article/details/47054231

Online Object Tracking: A Benchmark 论文笔记(转)的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. 机器学习中的矩阵方法(附录A): 病态矩阵与条件数

    1. 病态系统 现在有线性系统: Ax = b, 解方程 很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 4 ...

  2. struts2动态方法

    动态方法调用 在Struts2中动态方法调用有三种方式,动态方法调用就是为了解决一个Action对应多个请求的处理,以免Action太多 第一种方式:指定method属性 这种方式我们前面已经用到过, ...

  3. python 2.7的安装

    最近准备入手学习python 这里我是按照:http://blog.csdn.net/jcjc918/article/details/11022345 来的 我在安装python 3 的时候发现上下左 ...

  4. grunt使用watch和livereload的Gruntfile.js的配置

    周末在家看angularJS, 用grunt的livereload的自动刷新, 搞了大半天, 现在把配置贴出来, 免得以后忘记了, 只要按照配置一步步弄是没有问题的; 开始的准备的环境安装是: (1) ...

  5. hdu3374 KMP+最大最小表示法

    这题要求的是字符串左移时字典序最小和最大的第几次出现,并求出现次数.考虑一会可以发现,出现次数和循环节是有关系的. 出现了几次,就是循环了几次,如果循环节是他本身,也就是无循环,那这个字符串不管怎么移 ...

  6. 使用ssis完成excel的数据导入

    SSIS(SQL Server Integration Service)是从MS SQL 2005开始引入的,是一种ETL(Extract Transform Load)工具,SSIS比普通的ETL更 ...

  7. Linux operation strucutre

    Under the /usr/src directory. 1.arch目录包括了所有和体系结构相关的核心代码.它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CP ...

  8. jQuery 文本编辑器插件 HtmlBox 使用

    0.htmlbox下载地址:http://download.csdn.net/detail/leixiaohua1020/6376479 1.引入头文件 <script src="li ...

  9. 最短路算法floyd

    内容: 对n个点(n<=450),已知他们的边,也就是相邻关系,求任意两个点的最短距离. 代码: for(int k=1; k<=n; k++)//k写在外面 for(int i=1; i ...

  10. python多态

    多态是面向对象语言的一个基本特性,多态意味着变量并不知道引用的对象是什么,根据引用对象的不同表现不同的行为方式.在处理多态对象时,只需要关注它的接口即可,python中并不需要显示的编写(像Java一 ...