转自:http://blog.csdn.net/lanbing510/article/details/40411877

有博主翻译了这篇论文:http://blog.csdn.net/roamer_nuptgczx/article/details/45790415

Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters
 
 
 
Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update
 
 
 
Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold
 
2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold
 
3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation
 
 
 
 
Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse
templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that
trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of
initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF
 
//补充
Concluding Remarks
1.background information is critical for effective tracking. 
2.local models are important for tracking 
3.motion model or dynamic model is crucial for object tracking, especially when the motion of target
is large or abrupt

Good location prediction based on the dynamic model could reduce the search range and thus improve the tracking efficiency and robustness. 

 
 
 
Dataset

 
对应网站

 
一篇教程:http://blog.csdn.net/carrierlxksuper/article/details/47054231

Online Object Tracking: A Benchmark 论文笔记(转)的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. centos6.5上安装Openfire 4.0.3

    更新时间:2016年11月9日 00:18:27 博主的安装环境 物理机:        Win7 SP1 64位 ip:192.168.111.1    (用于安装spark 2.8.1) VM虚拟 ...

  2. Linux中使用crontab命令定时执行shell脚本或其他Linux命令

    使用crontab你可以在指定的时间执行一个shell脚本或者一系列Linux命令.例如系统管理员安排一个备份任务使其每天都运行 如何往 cron 中添加一个作业? # crontab –e0 5 * ...

  3. iOS-编译简单静态库初探

    首先声明,我写的这些网上都有更详细的内容,在这里只是写下我自己总结的一些重要内容,具体步骤如下: 事先准备:新建工程-Framework & Library - Cocoa Touch Sta ...

  4. RegexBuddy正则表达式工具

    RegexBuddy非常的好用,而且还能生成.net的代码. 我们在使用正则匹配时,毕竟.net提供的方法中,对于多行匹配就不能用单纯的正则去实现,而我们需要把它转换成相应的类库方法进行实现. 那么R ...

  5. 洛谷P1508 Likecloud-吃、吃、吃

    题目背景 问世间,青春期为何物? 答曰:“甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!” 题目描述 正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一直处在饥饿的状态中.某日上课,正当他饿得头昏 ...

  6. jsp学习(二)

    jsp运行原理 当服务器上的一个jsp页面被第一次请求标记时,服务器上的jsp引擎首先将jsp页面文件转译成一个Java文件,并编译这个java文件生成字节码文件,然后执行字节码文件响应客户的请求. ...

  7. 腾讯云ubuntu下mysqli服务的开启

    腾讯云ubuntu下mysqli服务的开启 今天晚上搞了好久,在本地操作系统deepin下操作完全无需开启mysqli模块,自动就开启了.这次介绍一下服务器ubuntu下mysqli模块的开启. 首先 ...

  8. 用Filter程序实现静态HTML页面的访问保护

    今天为练习Filter的用法编写了一个小程序. 当用户通过article的超链接读取文章的时候,会通过Filter进行检测有没有登录.只有登录的读者才能跳到文章页面,否则跳到登录页面. 文章就用简单的 ...

  9. Spring学习5-Spring整合JDBC及其事务处理(注解方式)

    一.整合的步骤   1.步骤一:首先要获得DataSource连接池(推荐使用B方式): 要对数据库执行任何的JDBC操作,需要有一个Connection.在Spring中,Connection对象是 ...

  10. XUnit学习

    1.建立测试单元项目 2.引用XUnit.dll或者在Nuget里安装XUnit 3.安装Nuget->xUnit.net[Runner: Visual Studio] 4.打开 测试-> ...