转自:http://blog.csdn.net/lanbing510/article/details/40411877

有博主翻译了这篇论文:http://blog.csdn.net/roamer_nuptgczx/article/details/45790415

Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters
 
 
 
Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update
 
 
 
Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold
 
2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold
 
3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation
 
 
 
 
Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse
templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that
trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of
initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF
 
//补充
Concluding Remarks
1.background information is critical for effective tracking. 
2.local models are important for tracking 
3.motion model or dynamic model is crucial for object tracking, especially when the motion of target
is large or abrupt

Good location prediction based on the dynamic model could reduce the search range and thus improve the tracking efficiency and robustness. 

 
 
 
Dataset

 
对应网站

 
一篇教程:http://blog.csdn.net/carrierlxksuper/article/details/47054231

Online Object Tracking: A Benchmark 论文笔记(转)的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. SqlDependency数据库同步+signalr 推送消息

    sqlDependency提供了这样一种能力:当被监测的数据库中的数据发生变化时,SqlDependency会自动触发OnChange事件来通知应用程序,从而达到让系统自动更新数据(或缓存)的目的. ...

  2. [转]ORACLE 中ROWNUM用法总结!

    原文地址:http://www.itpub.net/thread-824147-1-1.html 对于 Oracle 的 rownum 问题,很多资料都说不支持>,>=,=,between ...

  3. 【POJ 2104】 K-th Number 主席树模板题

    达神主席树讲解传送门:http://blog.csdn.net/dad3zz/article/details/50638026 2016-02-23:真的是模板题诶,主席树模板水过.今天新校网不好,没 ...

  4. xml_MathML的基本知识点__这东西要自己实践最好

    1 : <mi> 一般的字符串 2: <mo> 操作字符串 <mo> ( </mo> <mo>∑</mo> 3:<mn&g ...

  5. jvm classLoader architecture :

    jvm classLoader architecture : a.Bootstrap ClassLoader/启动类加载器 主要负责jdk_home/lib目录下的核心         api 或 - ...

  6. rpm常用选项

    httpd-2.2.15-39.el6.centos.x86_64.rpmhttpd   -      2.2.15-    39.el6.centos.       x86_64 .rpm软件名称- ...

  7. 求第N数大问题

    问题: InputThe first line of input contains a single integer P, (1 ≤ P ≤ 1000), which is the number of ...

  8. return view详解

    1.return View(); 返回值 类型:System.Web.Mvc.ViewResult将视图呈现给响应的 View() 结果. 注释 View() 类的此方法重载将返回一个具有空 View ...

  9. ppa安装php版本

    如果你想安装PHP的特定版本,那么这篇文章可以帮助你.这篇文章将帮助您安装PHP 5.4和PHP 5.5 PHP 5.6,通过使用PPA在Ubuntu 15.10 LTS,14.04或12.04 LT ...

  10. mysql引擎区别

    MySQL数据库引擎取决于MySQL在安装的时候是如何被编译的.要添加一个新的引擎,就必须重新编译MYSQL.在缺省情况下,MYSQL支持三个引擎:ISAM.MYISAM和HEAP.另外两种类型INN ...