转自:http://blog.csdn.net/lanbing510/article/details/40411877

有博主翻译了这篇论文:http://blog.csdn.net/roamer_nuptgczx/article/details/45790415

Factors that affect the performance of a tracing algorithm

1 Illumination variation
2 Occlusion
3 Background clutters
 
 
 
Main modules for object tracking

1 Target representation scheme
2 Search mechanism
3 Model update
 
 
 
Evaluation Methodology

1 Precison plot:
The percentage of frames whose estimated location is within the given threshold distance of the ground truth.
x coordinate: threshold
 
2 Success plot: 
The ratios of successful frames at the thresholds varied from 0 to 1
x coordinate: threshold
 
3 Robustness Evaluation
A OPE: one-pass evaluation
B TRE temporal robustness evaluation
C SRE spatial robustness evaluation
 
 
 
 
Overall Performance

详见论文
1  TLD performs well in long sequences with a redetection module 
2 Struck only estimates the location of target and does not handle scale variation
3 Sparse representations are effectivemodels to account for appearance change (e.g., occlusion).
4 Local sparse representations are more effective than the ones with holistic sparse
templates.
5 It indicates the alignmentpooling technique adopted by ASLA is more robust to misalignments and background clutters.
6 When an object moves fast, dense sampling based trackers (e.g., Struck, TLD and CXT) perform much better than others
7 On the OCC subset, the Struck, SCM, TLD, LSK and ASLA methods outperform others. The results suggest that structured learning and local sparse representations are effective in dealing with occlusions.
8 On the SV subset,ASLA, SCM and Struck perform best. The results show that
trackers with affine motion models (e.g., ASLA and SCM) often handle scale variation better than others that are designed to account for only translational motion with a few exceptions such as Struck
9 The performance of TLD, CXT, DFT and LOT decreases with the increase of
initialization scale. This indicates these trackers are more sensitive to background clutters. 
10 On the other hand, some trackers perform well or even better when the initial bounding box is enlarged, such as Struck, OAB, SemiT, and BSBT. This indicates that the Haar-like features are somewhat robust to background clutters due to the summation operations when computing features. Overall, Struck is less sensitive to scale variation than other well-performing methods.
11 Some trackers perform better when the scale factor is smaller, such as L1APG, MTT, LOT and CPF
 
//补充
Concluding Remarks
1.background information is critical for effective tracking. 
2.local models are important for tracking 
3.motion model or dynamic model is crucial for object tracking, especially when the motion of target
is large or abrupt

Good location prediction based on the dynamic model could reduce the search range and thus improve the tracking efficiency and robustness. 

 
 
 
Dataset

 
对应网站

 
一篇教程:http://blog.csdn.net/carrierlxksuper/article/details/47054231

Online Object Tracking: A Benchmark 论文笔记(转)的更多相关文章

  1. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  2. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  3. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  4. Struck: Structrued Output Tracking with Kernels 论文笔记

    Main idear Treat the tracking problem as a classification task and use online learning techniques to ...

  5. Learning Rich Features from RGB-D Images for Object Detection and Segmentation论文笔记

    相关工作: 将R-CNN推广到RGB-D图像,引入一种新的编码方式来捕获图像中像素的地心姿态,并且这种新的编码方式比单纯使用深度通道有了明显的改进. 我们建议在每个像素上用三个通道编码深度图像:水平视 ...

  6. Online Object Tracking: A Benchmark 翻译

    来自http://www.aichengxu.com/view/2426102 摘要 目标跟踪是计算机视觉大量应用中的重要组成部分之一.近年来,尽管在分享源码和数据集方面的努力已经取得了许多进展,开发 ...

  7. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  8. Correlation Filter in Visual Tracking系列一:Visual Object Tracking using Adaptive Correlation Filters 论文笔记

    Visual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filt ...

  9. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

随机推荐

  1. 自己保留:data provider

    <system.data>    <DbProviderFactories >      <add name="MySQL Data Provider" ...

  2. EntityFramework_MVC4中EF5 新手入门教程之五 ---5.通过 Entity Framework 读取相关数据

    在前面的教程中,您完成School数据模型.在本教程中,您会读取和显示相关的数据 — — 那就是,实体框架将加载到导航属性的数据. 下面的插图显示页面,您将完成的工作. 延迟. 预先,和显式加载的相关 ...

  3. WCF入门(7)

    前言 前段时间忙着驾照科目二的考试,都没有机会碰自己的电脑.说起来也是第一次参加这么没信心的考试,不过好在过了. 再打个广告吧,昨天终于把下载的WCF视频全部传到了QQ群共享里面,群号37819043 ...

  4. UITableViewdataSourse的协议所有方法

    UITableViewDataSource @required- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection ...

  5. web服务器

    1.打破信息孤岛,实现信息的集成 2.配置文件  web.xml          定义自己的服务器应该要哪些功能! 3.tomcat 是一个servlet容器,一个web服务器. 部署:将web应用 ...

  6. 使用gitlab+jenkins+saltstack+rsync自动部署Web应用

    转载:http://www.ithao123.cn/content-8128849.html

  7. 嘻哈帮天通苑_poppin——张锋

    l click_me

  8. Java-人民币转成大写

    /** * 人民币转成大写 hangeToBig * * @param value * @return String */ public static String 人民币转成大写(double va ...

  9. 44.Android之Shape设置虚线、圆角和渐变学习

    Shape在Android中设定各种形状,今天记录下,由于比较简单直接贴代码. Shape子属性简单说明一下:  gradient -- 对应颜色渐变. startcolor.endcolor就不多说 ...

  10. Vijos1459 车展 (treap)

    描述 遥控车是在是太漂亮了,韵韵的好朋友都想来参观,所以游乐园决定举办m次车展.车库里共有n辆车,从左到右依次编号为1,2,…,n,每辆车都有一个展台.刚开始每个展台都有一个唯一的高度h[i].主管已 ...