FXTZ II


Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 498    Accepted Submission(s): 266

Problem Description
Cirno is playing a fighting game called "FXTZ" with Sanae. 

Sanae is a ChuShou(master) of the game while Cirno is a ShaBao(noob). Since Cirno is a ShaBao, she just presses a random key on the keyboard for every 0.5 second, expecting to make a BiShaJi. 

The battle begins. Having tried exactly 9 times, she finally makes a BiShaJi! She find herself summoned N iceballs!!! Then Sanae's HP decreases to 0 immediately....It should have been like that. But Cirno is too simple, always navie. She doesn't know how to
handle the iceballs, so she starts to press the keyboard at random, again.

Let's see how the iceball damages. Each iceball has a fixed energy: the first ball's energy is 2^0, the second ball's energy is 2^1,..., and the N-th ball's energy is 2^(N-1). The damage caused by an iceball is equal to its energy. Cirno will shoot N times.
Since Cirno is pressing the keyboard at random, each time Cirno will choose exactly one iceball with equal possibility to shoot out. Once shot out, the iceball can't be chosen again. And even worse, the target may be either her opponent or herself, with equal
possibility(50%). What a big ShaBao she is. =_=

During shooting, once Cirno's HP is less than Sanae's, she will lose the game. Otherwise, she wins. 

You may assume Sanae did nothing while Cirno's shooting(all damages are caused by Cirno's iceball), and their original HP are both 2^N (No one will die in the middle of the battle unless Cirno's HP is less than Sanae's).

Here comes the question: Can you calculate the possibility of Cirno's victory?
 
Input
The first line an integer C (C<=30), the number of test cases. 

For each case, the only line contains one integer N(0<N<=500), indicating the number of iceballs.
 
Output
For each case output a fraction, the possibility of Cirno's victory. The fraction must be reduced.
 
Sample Input
2
1
4
 
Sample Output
1/2
35/128
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  4049 4050 4044 4047 4042 
 

题目大意:

有n个能量球,能量分别为 2^0,2^1,2^2,........2^n-1

这个人每次随机选择一个能量球概率相同,选择后的可以看作消失了不能再被选,打中自己和敌人的概率都是50%,

过程中,一旦自己的血量小于对方就算输了,问自己赢的概率。

解题思路:

这题是分析概率题

首先,拿到题目,看到的输出样式是分子除以分母,这样的格式的话,不能只求概率,要用方法数来算

(1)可以确定的是为化简的分母,也就是总方法数,应该是 n 个雪球全排列后,然后再决定每个雪球打在谁身上。

也就是 n! * 2^n

(2)现在来分析分子,也就是赢的方法数

现在n个雪球排列好了在一排,

可以肯定的是第n个雪球是打在对方身上 ,否则我必输

因为第n个雪球的能量是2^(n-1) 大于剩下的 n-1 个球的能量总和

所以根据第n个球的位置讨论赢的方法数,假设这个球记为x,则其它球记为*

1.第n个雪球在1号位

x*****************

n-1 个雪球只需要随机排列(n-1)!,并且可以随便打谁2^(n-1) ,所以方法数为:c[n-1][0]*(n-1)!*2^(n-1)

2.第n个雪球在2号位

*x****************

只需要选择1个雪球在左边,n-2个雪球可以随便,所以方法数为:c[n-1][1]*(n-2)!*2^(n-2)

3.第n个雪球在3号位

**x***************

只需要选择2个雪球在左边,并且满足要求也就是dp[2],n-3个雪球可以随便,dp[2]*c[n-1][2]*(n-3)!*2^(n-3)

备注:dp[n]记录的是n个雪球时满足要求的方法数

4.第n个雪球在i号位

*******x**********

只需要选择i-1个雪球在左边,并且满足要求也就是dp[i-1],剩下的n-i个球随便放(n-i)!*2^(n-i)方法,所以方法数dp[i-1]*c[n-1][i-1]*(n-i)!*2^(n-i)

因此,总的赢的方法数dp[n] = sum { dp[i-1]*c[n-1][i-1]*(n-i)!*2^(n-i) } 1<=i<=n

化简:dp[n] = sum { dp[i-1] * (n-1)! * 2^(n-i) / (i-1)!  } 1<=i<=n

即  dp[n] = (n-1)! * ( dp[0]*2^(n-1)/0! + dp[1]*2^(n-2)/1!  + dp[2]*2^(n-3)/2! + ..... + dp[n-2]*2^1/(n-2)! + dp[n-1]*2^0/(n-1)! )

而dp[n-1] = (n-2)! * ( dp[0]*2^(n-2)/0! + dp[1]*2^(n-3)/1!  + dp[2]*2^(n-4)/2! + ..... + dp[n-2]*2^0/(n-2)! )

所以看出: dp[n]=(n-1)*2*dp[n-1]+dp[n-1]

所以  dp[n]=(2*n-1)*dp[n-1] ,dp[0]=1,

所以赢的方法数为:1*3*5*7*...*(2*n-1)

综合(1),(2)得到答案为1*3*5*7*...*(2*n-1) / (n! * 2^n)

解题代码:

import java.util.*;
import java.math.*; public class Main{
public static void main(String[] args){
Scanner scan=new Scanner(System.in);
int T=scan.nextInt();
while(T-- >0){
int n=scan.nextInt();
BigInteger sum=new BigInteger("1"),x=new BigInteger("1");
for(int i=1;i<=n;i++){
sum=sum.multiply(BigInteger.valueOf(2*i));
x=x.multiply(BigInteger.valueOf(2*i-1));
}
BigInteger gcd0=x.gcd(sum);
System.out.println(x.divide(gcd0)+"/"+sum.divide(gcd0));
}
scan.close();
}
}

版权声明:欢迎关注我的博客,本文为博主toyking原创文章,未经博主允许不得转载。

HDU 4043 FXTZ II (组合数学-排列组合)的更多相关文章

  1. hdu 4043 FXTZ II [ 概率 + Java大数]

    传送门 FXTZ II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)

    Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 5816 状压DP&排列组合

    ---恢复内容开始--- Hearthstone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java ...

  4. HDU 1261 字串数(排列组合)

    字串数 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  5. 【HDOJ】4043 FXTZ II

    1. 题目描述有n个球,第i个球的伤害值为$2^i-1, i \in [1,n]$.有甲乙两个人,每次由甲选择n个球中的一个,用它以相同概率攻击自己或者乙,同时彻底消耗这个球.这样的攻击最多进行n次. ...

  6. HDU 2492 BIT/逆序数/排列组合

    Ping pong Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. ACM~排列组合&amp;&amp;hdu例子

    排列组合是数学中的一个分支.在计算机编程方面也有非常多的应用,主要有排列公式和组合公式.错排公式.母函数.Catalan Number(卡特兰数)等. 一.有关组合数学的公式 1.排列公式   P(n ...

  8. 排列组合+组合数取模 HDU 5894

    // 排列组合+组合数取模 HDU 5894 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 // 思路: // 定好m个人 相邻人之间k个座位 剩下就剩n-( ...

  9. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

随机推荐

  1. sprint3(第九天)

    今天四六级考试,没做什么内容,添加了前台的菜单的图片 燃尽图

  2. 重构第22天 分解方法(Break Method)

    理解:如果一个功能,里面比较复杂,代码量比较多,我们就可以把这个功能分解成多个小的method,每个方法实现该功能的一个小小的部分,并且方法命名成容易理解,和方法内容相关的名称,更有助于维护和可读性提 ...

  3. LeeCode - Unique Binary Search Trees

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

  4. WinForm公共控件

    公共控件:1.Button:按钮 用户点击时触发事件 行为属性 Enabled -是否启用 Visible -是否隐藏2.CheckBox .CheckListBox - 复选框 复选框组 3.Com ...

  5. 利用name或id属性设置页面跳转的锚点

    理论准备         网页中的链接按照链接路径的不同,可以分为3种类型,分别是内部类型.锚点链接和外部链接:         按照使用对象的不同,网页中的链接又分为文本超链接,图像超链接,E-ma ...

  6. imfong.com,我的新博客地址

    imfong.com新博客采用jekyll+Github搭建,欢迎访问.

  7. EffectiveJava——类层次优于标签类

    标签类: 有时候,可能会遇到带有两种甚至更多钟风格的类的实例的类,并包含表示实例风格的(tag)域.例如下面这个类,它能够表示圆形或者矩形: /** * 类层次优先与标签类 * @author wei ...

  8. 论元数据和API管理工具

    公司里面的很多部门都在广泛的采用元数据管理,也采用了公司内部开发的元数据管理工具,有些部门的实施效果一直非常好,而有些部门的效果则差强人意.这个问题,其实和软件系统开发完成进入维护阶段后成本居高不下的 ...

  9. galera cluster各种问题专贴

    dbforge在galera cluster下debug存储过程hang... 经查看process list,dbforge cr_debug引擎使用了use_lock()函数,而galera cl ...

  10. [Xamarin.iOS] Visual Studio中Xamarin.iOS项目,无法加入PCL项目参考、NuGet组件参考

    [Xamarin.iOS] Visual Studio中Xamarin.iOS项目,无法加入PCL项目参考.NuGet组件参考 解决方案 目前Visual Studio中最新版本的Xamarin.iO ...