【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题
模板,,,
#include<cstdio>
using namespace std;
void exgcd(long long a,long long b,long long &x,long long &y){
if (b==0) {x=1; y=0;}
else {exgcd(b,a%b,x,y); int t=y; y=x-a/b*y; x=t;}
}
int main(){
long long a,b,x,y;
scanf("%lld %lld\n",&a,&b);
exgcd(a,b,x,y);
printf("%lld\n",(x+b)%b);
return 0;
}
白书上的更简短的模板:
void gcd(LL a,LL b,LL &d,LL &x,LL &y){
if (!b){
d=a;
x=1;
y=0;
}else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
【codevs 1200】【NOIP 2012】同余方程 拓展欧几里德求乘法逆元模板题的更多相关文章
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- $O(n+log(mod))$求乘法逆元的方法
题目 LOJ #152. 乘法逆元 2 题解 一个奇技淫巧qwq.可以离线求乘法逆元,效率\(O(n+log(mod))\). 考虑处理出\(s_n\)表示\(\prod_{i=1}^na_i\).以 ...
- hdu1115 Lifting the Stone(几何,求多边形重心模板题)
转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1115">http://acm.hdu.edu.cn/showproblem.php ...
- [NOIp 2012]同余方程
Description 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Input 输入只有一行,包含两个正整数 a, b,用一个空格隔开. Output 输出只有一行,包含一个 ...
- [Noip 2012]同余方程(线性同余方程)
我们先放题面-- RT就是求一个线性同余方程ax≡1(mod b)的最小正整数解 我们可以将这个同于方程转换成这个方程比较好理解 ax=1+bn(n为整数 我们再进行一个移项变为ax-bn=1 我们设 ...
- 51Nod 1256 求乘法逆元--扩展欧几里德
#include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...
- HDU-5685 Problem A 求乘法逆元
题目链接:https://cn.vjudge.net/problem/HDU-5685 题意 给一个字符串S和一个哈希算法 $ H(s)=\prod_{i=1}^{i\leq len(s)}(S_{i ...
- 【模拟7.25】回家(tarjan V-DCC点双连通分量的求法及缩点 求割点)模板题
作为一道板子题放在第二题令人身心愉悦,不到一个小时码完连对拍都没打. 关于tarjan割点的注意事项: 1.在该板子中我们求的是V-DCC,而不是缩点,V-DCC最少有两个点组成,表示出掉一个块里的任 ...
- exgcd,求乘法逆元
procedure exgcd(a,b:int64); var t:longint; begin then begin x:=;y:=; exit; end else exgcd(b,a mod b) ...
随机推荐
- 开发一个App要多少钱?APP开发报价单,APP开发外包有哪些注意事项-广州达到信息www.ddapp.com.cn
来源:广州达到信息著作权归广州达到信息所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作为一个APP开发从业者,经常会有人问到:开发一个App要多少钱?下面针对这个问题来好好解答解答正经的谈 ...
- win8程序开机自启动管理
主要介绍利用系统自身的工具来管理开机自启动,而非第三方的工具,自己了解了,也写出来分享给大家@.·.@ 1.程序设置开机自启动 a. 打开计算机资源管理器-->进入"C:\Progra ...
- Android驱动调试利器Busybox之初体验
工欲善其事必先利其器,之前做WinCE开发时,经常写一些小工具以提高开发调试的效率,如WinCE驱动调试助手.WinCE串口调试助手.WinCE6.0寄存器访问工具.WinCE远程桌面助手和S3C24 ...
- 常用中文字体 Unicode 编码
各大网站的字体选择 网站 字体 腾讯 font: 12px "宋体","Arial Narrow",HELVETICA; 淘宝 font: 12px/1.5 t ...
- leetcode : valid binary search tree
不能通过 当元素中 有 val == INT_MAX 或者 val == INT_MIN /** * Definition for a binary tree node. * struct Tree ...
- AC日记—— codevs 1031 质数环(搜索)
题目描述 Description 一个大小为N(N<=17)的质数环是由1到N共N个自然数组成的一个数环,数环上每两个相邻的数字之和为质数.如下图是一个大小为6的质数环.为了方便描述,规定数环上 ...
- 用mel编写自定义节点的属性编辑器界面
用mel编写自定义节点的属性编辑器界面比较麻烦,而且网上例子又少,下面给出一个范例,说明基本的格式 // 初始化节点时调用 global proc initControl(string $attrNa ...
- Centos中yum方式安装java
查看CentOS自带JDK是否已安装.◆输入:yum list installed |grep java. 若有自带安装的JDK,如何卸载CentOS系统自带Java环境?◆卸载JDK相关文件输入:y ...
- Android studio disign 问题
有些低配置的电脑使用android studio 写xml的时候,disign会一直处于rendering,有可能是xml使用的图片过大导致渲染不出来
- 公钥(Public Key)与私钥(Private Key)
公钥(Public Key)与私钥(Private Key)是通过一种算法得到的一个密钥对(即一个公钥和一个私钥),公钥是密钥对中公开的部分,私钥则是非公开的部分.公钥通常用于加密会话密钥.验证数字签 ...