Deep Reinforcement Learning Based Trading Application at JP Morgan Chase

https://medium.com/@ranko.mosic/reinforcement-learning-based-trading-application-at-jp-morgan-chase-f829b8ec54f2

FT released a story today about the new application that will optimize JP Morgan Chase trade execution ( Business Insider article on the same topic for readers that do not have FT subscription ). The intent is to reduce market impact and provide best trade execution results for large orders.

It is a complex application with many moving parts:

 

Its core is an RL algorithm that learns to perform the best action ( choose optimal price, duration and order size ) based on market conditions. It is not clear if it is Sarsa ( On-Policy TD Control) or Q-learning (Off-Policy Temporal Difference Control Algorithm ) as both algorithms are present in JP Morgan slides:

 

Sarsa

 

Q-learning

State consists of price series, expected spread cost, fill probability, size placed, as well as elapsed time, %progress, etc. Rewards are immediate rewards ( price spread ) and terminal ( end of episode ) rewards like completion, order duration and market penalties ( obviously those are negative rewards that punish the agent along these dimensions ).

 

Actions are memorized as weights of a Deep Neural Network — function approximation via NN is used since state, action space is too big to be handled in tabular form. We assume stochastic gradient descent is used for both feed forward and backprop operation operation ( hence Deep designation ):

 

JP Morgan is convinced this is the very first real time trading AI/ML application on Wall Street. We are assuming this is not true i.e. there are surely other players operating in this space as RL implementation to order execution is known for quite a while now ( Kearns and Nevmyvaka 2006 ).

The latest LOXM developmentswill be presented at QuantMinds Conference in Lisbon (May of 2018).

Instinet is also using Q-learning, probably for the same purpose ( market impact reduction ).

[转]Deep Reinforcement Learning Based Trading Application at JP Morgan Chase的更多相关文章

  1. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  2. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  3. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  4. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  5. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  6. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  7. [DQN] What is Deep Reinforcement Learning

    已经成为DL中专门的一派,高大上的样子 Intro: MIT 6.S191 Lecture 6: Deep Reinforcement Learning Course: CS 294: Deep Re ...

  8. 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach

    Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...

  9. 18 Issues in Current Deep Reinforcement Learning from ZhiHu

    深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...

随机推荐

  1. 78. Subsets C++回溯法

    本题还是基本的回溯法.就是回溯函数的参数选择上要花点心思! class Solution { public: void backTrack(vector<int> ans, vector& ...

  2. CentOS配置教程

    1.配置网卡开机自动启动 查看/etc/sysconfig/network-scripts/ifcfg-eth0的初始内容: cat /etc/sysconfig/network-scripts/if ...

  3. jcmd

    1.jps 2.jcmd 1761[pid] PerfCounter.print 查看指定进程的性能统计信息 概述 在JDK1.7以后,新增了一个命令行工具 jcmd.他是一个多功能的工具,可以用它来 ...

  4. ElasticSearch的matchQuery与termQuery区别

    matchQuery:会将搜索词分词,再与目标查询字段进行匹配,若分词中的任意一个词与目标字段匹配上,则可查询到. termQuery:不会对搜索词进行分词处理,而是作为一个整体与目标字段进行匹配,若 ...

  5. Linux第六周作业

    一 实验过程 1 先进入LinuxKernel环境下,更新menu代码到最新版,用到的命令为rm menu -rf //强制删除当前menu,git clone http://git.shiyanlo ...

  6. 蓝桥杯—BASIC-21 sine之舞(递归递推)

    题目:最近FJ为他的奶牛们开设了数学分析课,FJ知道若要学好这门课,必须有一个好的三角函数,所以他准备和奶牛们做一个“Sine之舞”的游戏,寓教于乐,提高奶牛们的计算能力. 不妨设 An=sin(1– ...

  7. H5离线缓存技术Application Cache

    H5离线缓存技术Application Cache 1.离线缓存技术:是浏览器本身的一种机制 HTML5引入Application Cache(应用程序缓存)技术,离线存储可以将站点的一些文件存储在本 ...

  8. re随机模块应用-生成验证码(无图片)

    方法一,通过choice方式生成验证码 此方法生成每次调用crate_code()会生成三个随机数,然后再三个随机数中选择一个,资源调用相对多些 import random def v_code(co ...

  9. QuickStart系列:docker部署之redis

    在centos7的docker中部署 redis,这里只介绍 单节点的部署. docker run -p 6379:6379 -v $PWD/data:/data -d redis:latest re ...

  10. python,判断操作系统是windows,linux

    import sys,platform print(sys.platform) print(platform.system()) sys.platform: 获取当前系统平台. platform.sy ...