Hierarchical Object Detection with Deep Reinforcement Learning

NIPS 2016 WorkShop 

  Paper : https://arxiv.org/pdf/1611.03718v1.pdf

  Project Page : https://github.com/imatge-upc/detection-2016-nipsws 

  摘要: 我们提出一种基于深度强化学习的等级物体检测方法 (Hierarchical Object  Detection). 关键点在于: 专注于图像的含有更多信息量的区域, 并且放大该区域. 我们训练一个 intelligent  agent, 给定一个图像窗口, 能够确定将注意力集中于预先设定的五个区域中的哪一个. 这个过程迭代的提供了一个等级的图像分析. 我们对比了两个不同的候选 proposal 策略来引导图像搜索: with and without overlap. 此外, 我们的方法对比了两种不同的策略来提取特征: 第一种是对每一个 region proposal 计算新的 feature map ; 另一种方法是对于整幅图像计算 feature maps 并为后续的每一个 region proposal 提供 crop 的feature map.

  模型   Hierarchical Object Detection Model :

  我们定义了物体检测问题当做是序列决策过程 (the sequential decision process). 每一个时间步骤, agent 应该决定图像的哪个区域应该集中注意力, 以便于少量的步骤内找到物体. 我们将这个问题看作是 Markov Decision Process , 提供了一个框架来建模 decision making.

  MDP formulation :

  作者首先定义了 MDP 的大致过程 : state, actions, reward :

  State :  当前区域 和 记忆向量 构成, 即: the current region and a memory vector. 描述符定义了两个模型: the Image-Zooms model and the Pool45-Crops model . 状态的记忆向量(memory vector)捕获了agent 搜索物体当中,已经选择的过去 4  个 actions. 由于 agent 是学习一个 bounding box 的 refinement procedure, 一个记忆向量编码了这个 refinement procedure 的状态 用来稳定搜索轨迹. 我们将过去的 4 个 actions 编码成一个 one-shot vector. 由于本文定义了 6 个 actions, 所以向量的维度是 24.

  Actions : 跟 ICCV 2015 年的那个检测的方法一样, 这里的action 也是定义成了图像变换的操作 和 停止操作.

  Rewards : 此处的设计 与 ICCV 2015 仍然是一致的.

  

  Model :  

  

  我们讨论了两种提取特征的方法, 上面就是所用的大致网络框架. Image-Zooms model and the Pool45-Crops model.

  对于 Image-Zooms model 来说, 每一个区域都 resize 成 224*224 的大小, 然后抽取 VGG-16 的 Pool 5 layer 的特征.

  对于 Pool45-Crops model, 图像是 full-resolution 传给 VGG-16 的 Pool 5  layer.

  

  像 Faster RCNN 的 ROI Pooling 的方法一样, 本文也是采用这种思路, 只是抽取 ROI 的 feature . 像 SSD 一样, 我们根据 ROI 的尺寸来选择 feature map. 对于较大的物体, 本文的方法就选择较深的 feature map, 而较小的物体, 本文就选择较浅的 feature map .

   

  


论文阅读之: Hierarchical Object Detection with Deep Reinforcement Learning的更多相关文章

  1. 论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline

    论文阅读:Prominent Object Detection and Recognition: A Saliency-based Pipeline  如上图所示,本文旨在解决一个问题:给定一张图像, ...

  2. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  3. 论文笔记之:Human-level control through deep reinforcement learning

    Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在 ...

  4. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  5. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  6. 论文阅读 | CenterNet:Object Detection with Keypoint Triplets

    相关链接 论文地址:https://arxiv.org/abs/1904.08189 代码链接:https://github.com/Duankaiwen/CenterNet 概述 CenterNet ...

  7. 论文阅读 | STDN: Scale-Transferrable Object Detection

    论文地址:http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection ...

  8. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  9. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

随机推荐

  1. 05 enumerate index使用

    # enumerate 自动生成一列, 默认0开始,每次自增+1li = ["电脑","鼠标垫","U盘","游艇"]f ...

  2. html5 随机数函数

    function selec(low,high){var ch=high-low+1;return Math.floor(Math.random()*ch+low);}for (var i = 0; ...

  3. Explorer Bo (思维 + 树链剖分)

    题意:求用最少的链覆盖所有的边用最少的总链长度. 思路:为了使得使用的链最少,我们可以知道使用的数量应该是(子叶 + 1)/ 2. 画图可知:当节点下的边数是偶数时,为了将该父节点上的边给连接上,所以 ...

  4. 20155228 2016-2017-2 《Java程序设计》第8周学习总结

    20155228 2016-2017-2 <Java程序设计>第8周学习总结 教材学习内容总结 NIO与NIO2 NIO使用频道来衔接数据节点,在处理数据时,NIO可以让你设定缓冲区容量, ...

  5. ubuntu14.04 cpu-ssd

    1. ssd-caffe部署 五年半前老笔记本,没有GPU(其实有,AMD的,不能装CUDA),之前装过CPU版的Caffe 新建一个目录,然后参考网上步骤 sudo git clone https: ...

  6. python 文件路径名,文件名,后缀名的操作

    需要使用路径名来获取文件名,目录名,绝对路径等等. 使用os.path 模块中的函数来操作路径名.下面是一个交互式例子来演示一些关键的特性: >>> import os >&g ...

  7. qt5.5.1 移植4412的问题过程

    1.编译错误: ../WTF/wtf/unicode/wchar/UnicodeWchar.h: In function 'bool WTF::Unicode::isAlphanumeric(UCha ...

  8. Linux基础命令---检查密码文件pwck

    pwck 检查用户密码文件“/etc/passwd”和“/etc/shadow”的完整性,将验证结果送到标砖输出.提示用户删除格式不正确或有其他不可更正错误的条目.检查以验证每个条目是否具有:正确的字 ...

  9. document.createDocumentFragment 以及创建节点速度比较

    document.createDocumentFragment document.createDocumentFragment()方法创建一个新空白的DocumentFragment对象. Docum ...

  10. flask 请求上下文

    一篇引用大牛的 https://www.cnblogs.com/zhaopanpan/p/9457343.html ### 线程安全 ```python# 线程不安全class Foo(object) ...