uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门
戳此处转移
题目大意
给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b_{i - 1}}^{b_{i}} \equiv 1 \pmod{2}$。答案模$10^{9} + 7$
考虑限制条件,即前后两个数$b_{i - 1}, b_{i}$,它们要满足$C_{b_{i - 1}}^{b_{i}} \equiv 1\pmod{2}$。
这样不好处理,考虑使用Lucas定理,得到$b_{i - 1}$是$b_{i}$的子集的结论。
然后是个常规动态规划,用$f[i][s]$表示考虑到第$i$位,最后一个数是$s$的方案数。但是这样时间复杂度$O(n^{2})$。
考虑分块,每个位置将它的子集信息上传。
然后修改和查询一个枚举前9位,一个枚举后9位就行了。
一直不知道所有数互不相同的意义。
然后直到今天,发现可以直接枚举子集,$O(3^{\left \lceil \log_{2}W \right \rceil})$。
Code
/**
* uoj
* Problem#300
* Accepted
* Time: 400ms
* Memory: 2956k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; const int S = << , M = 1e9 + ;
const int maskL = ( << ) - , maskH = maskL << , mask = maskL | maskH; int n;
int *ar;
int f[S][S]; inline void init() {
scanf("%d", &n);
ar = new int[(n + )];
for (int i = ; i <= n; i++)
scanf("%d", ar + i);
} inline int query(int S) {
int rt = , s0 = S & maskL, s1 = (S & maskH) >> , ms1 = s1 ^ maskL;
for (int s = ms1; s; s = (s - ) & ms1)
rt = (rt + f[s | s1][s0]) % M;
return (rt + f[s1][s0]) % M;
} inline void modify(int S, int val) {
int s0 = S & maskL, s1 = (S & maskH) >> ;
for (int s = s0; s; s = (s - ) & s0)
f[s1][s] = (f[s1][s] + val) % M;
f[s1][] = (f[s1][] + val) % M;
} int res = ; inline void solve() {
modify(mask, );
for (int i = , c; i <= n; i++) {
c = query(ar[i]);
res = (res + c) % M;
modify(ar[i], c);
}
res = (res - n + M) % M;
printf("%d", res);
} int main() {
// freopen("gift.in", "r", stdin);
init();
solve();
return ;
}
uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划的更多相关文章
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
- bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- [CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...
- [UOJ300][CTSC2017]吉夫特
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...
- uoj#300.【CTSC2017】吉夫特
题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...
随机推荐
- POJ 3233 Matrix Power Series(二分等比求和)
Matrix Power Series [题目链接]Matrix Power Series [题目类型]二分等比求和 &题解: 这题我原来用vector写的,总是超时,不知道为什么,之后就改用 ...
- caffe的运行create_data.sh前对VOC2007图片格式的更改
运用caffe进行深度学习之前需要对图片进行预处理,将图片的大小,格式等进行修改 将300*300的图片改为256*256格式 则将以下参数改为: min_dim=256 max_dim=256 wi ...
- [ Windows BAT Script ] 删除某个目录下的所有某类文件
删除某个目录下的所有某类文件 @echo off for /R %%s in (*.txt) do ( echo %%s del %%s ) pause @echo on
- uva 1322 Minimizing Maximizer
题意: 有n个数,m个排序器,每个排序器可以把区间ai到bi的数从小到大排序.这m个排序器的输出就是m个排序之后的第n个数. 现在发现有些排序器是多余的.问至少需要多少个排序器可以使得输出不变.排序器 ...
- MVC中视图界面设置Checkbox
今天是六一儿童节,来谈谈Checkbox,前面的博客已经提到了关于单选.多选.反选.全选等问题的处理,这里作一下补充说明. 全选/反选 <td width="5%">& ...
- 20165305 实验一: Java开发环境的熟悉
实验1-1 建立"自己学号exp1"的目录. 在"自己学号exp1"目录下建立src,bin等目录. javac,java的执行在"自己学号exp1& ...
- 2017-2018-2 20165215 实验二 Java面向对象程序设计
20165215 实验二 Java面向对象程序设计 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:张家佳 学号:20165215 指导教师:娄嘉鹏 实验日期:2018年4月16日 ...
- CATALINA_OPTS和 JAVA_OPTS区别
在Tomcat的catalina.sh文件中的启停server脚本中都应用到了两个变量: CATALINA_OPTS和JAVA_OPTS.用于保存Tomcat运行所需的各种参数. 他们在文件中的注释如 ...
- 迭代器 生成器 yield
iter 迭代iterable 可迭代的 iterator迭代器 dir函数查看一个数据类型内部含有哪些方法 两边带着双下划线的方法叫做"魔术方法","双下方法" ...
- Python之pytest 基础
pytest是一个非常成熟的全功能的Python测试框架,主要特点有以下几点:1.简单灵活,容易上手:2.支持参数化:3.能够支持简单的单元测试和复杂的功能测试,还可以用来做selenium/appn ...