题目传送门

  戳此处转移

题目大意

  给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b_{i - 1}}^{b_{i}} \equiv 1 \pmod{2}$。答案模$10^{9} + 7$

  考虑限制条件,即前后两个数$b_{i - 1}, b_{i}$,它们要满足$C_{b_{i - 1}}^{b_{i}} \equiv 1\pmod{2}$。

  这样不好处理,考虑使用Lucas定理,得到$b_{i - 1}$是$b_{i}$的子集的结论。

  然后是个常规动态规划,用$f[i][s]$表示考虑到第$i$位,最后一个数是$s$的方案数。但是这样时间复杂度$O(n^{2})$。

  考虑分块,每个位置将它的子集信息上传。

  然后修改和查询一个枚举前9位,一个枚举后9位就行了。

  一直不知道所有数互不相同的意义。

  然后直到今天,发现可以直接枚举子集,$O(3^{\left \lceil \log_{2}W \right \rceil})$。

Code

 /**
* uoj
* Problem#300
* Accepted
* Time: 400ms
* Memory: 2956k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; const int S = << , M = 1e9 + ;
const int maskL = ( << ) - , maskH = maskL << , mask = maskL | maskH; int n;
int *ar;
int f[S][S]; inline void init() {
scanf("%d", &n);
ar = new int[(n + )];
for (int i = ; i <= n; i++)
scanf("%d", ar + i);
} inline int query(int S) {
int rt = , s0 = S & maskL, s1 = (S & maskH) >> , ms1 = s1 ^ maskL;
for (int s = ms1; s; s = (s - ) & ms1)
rt = (rt + f[s | s1][s0]) % M;
return (rt + f[s1][s0]) % M;
} inline void modify(int S, int val) {
int s0 = S & maskL, s1 = (S & maskH) >> ;
for (int s = s0; s; s = (s - ) & s0)
f[s1][s] = (f[s1][s] + val) % M;
f[s1][] = (f[s1][] + val) % M;
} int res = ; inline void solve() {
modify(mask, );
for (int i = , c; i <= n; i++) {
c = query(ar[i]);
res = (res + c) % M;
modify(ar[i], c);
}
res = (res - n + M) % M;
printf("%d", res);
} int main() {
// freopen("gift.in", "r", stdin);
init();
solve();
return ;
}

uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划的更多相关文章

  1. 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)

    [BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...

  2. loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】

    题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...

  3. bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...

  4. BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)

    题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...

  5. [CTSC2017]吉夫特(Lucas定理,DP)

    送70分,预处理组合数是否为偶数即可. 剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数.这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接 ...

  6. 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)

    题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...

  7. BZOJ4903 UOJ300 CTSC2017 吉夫特 【Lucas定理】

    BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation&q ...

  8. [UOJ300][CTSC2017]吉夫特

    uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\) ...

  9. uoj#300.【CTSC2017】吉夫特

    题面:http://uoj.ac/problem/300 一道大水题,然而我并不知道$lucas$定理的推论.. $\binom{n}{m}$为奇数的充要条件是$n&m=n$.那么我们对于每个 ...

随机推荐

  1. Cocos Creator 键盘监听事件

    键盘事件键盘.设备重力传感器此类全局事件是通过函数 cc.systemEvent.on(type, callback, target) 注册的.cc.SystemEvent.EventType.KEY ...

  2. cocos2d-x JS 纯代码实现人物头像裁剪

    有时候为了方便会直接用颜色层和过渡层来显示一些信息,但层只有方角没有圆角不太美观,于是我用剪切节点实现了一个圆角层.方便以后使用.   当然,如果使用Cosos Studio 操作会更好一些,省去了坐 ...

  3. Oracle与MySQL的比较[内容来自网络]

    支持的特性方面的比较: https://www.quora.com/Whats-the-difference-between-Oracle-and-MySQL oracle和mysql在 安全,数据类 ...

  4. django 1.9.7 css控制模板样式

    问题:css样式不能控制html样式(针对开发环境,不针对生产环境) 现象: django.template.exceptions.TemplateSyntaxError: Invalid block ...

  5. 使用JFileChooser实现在指定文件夹下批量添加根据“数字型样式”或“非数字型样式”命令的文件夹

    2018-11-05 20:57:00开始写 Folder.java类 import javax.swing.JFrame; import javax.swing.JPanel; import jav ...

  6. jQuery样式--css(name|pro|[,val|fn])

    css(name|pro|[,val|fn]) 概述 访问匹配元素的样式属性 参数 name  要访问的属性名称 name  一个或多个CSS属性组成的一个数组 properties  要设置为样式属 ...

  7. ENode, 领域模型,DDD

    Entity Framework之领域驱动设计实践 使用ENode框架前您需要了解的东西(初稿) 领域驱动设计实战--战略建模 http://www.cnblogs.com/yubaolee/p/Ca ...

  8. 【Linux学习七】软件安装

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.编译安装1.解压 源码文件是压缩包 要先解压tar -zxvf t ...

  9. 利用QPainter绘制散点图

    [1]实例代码 (1)代码目录结构(备注:QtCreator默认步骤新建工程) (2)工程pro文件 QT += core gui greaterThan(QT_MAJOR_VERSION, ): Q ...

  10. 配置tomcat的https域名

    配置tomcat的https域名: <Connector port=" protocol="org.apache.coyote.http11.Http11NioProtoco ...