tensorflow intel platform 优化
TensorFlow *是深度学习领域中主要使用的机器学习框架,要求高效利用计算资源。 为了充分利用英特尔架构和提高性能,TensorFlow *库已经使用英特尔MKL-DNN原语进行了优化,该原语是深度学习应用的流行性能库。
有三种安装方式。
1. 使用pip
pip install -i https://pypi.anaconda.org/intel/simple tensorflow
2. anaconda 安装
3. 自己编译
前两种方式可能不支持最新的指令集。
安装 Bazel
pushd /var/tmp URL=https://github.com/bazelbuild/bazel/releases/latest
LASTURL=$(curl $URL -s -L -I -o /dev/null -w '%{url_effective}')
BZ_VERSION=${LASTURL##*/}
wget https://github.com/bazelbuild/bazel/releases/download/$BZ_VERSION/bazel-$BZ_VERSION-installer-linux-x86_64.sh chmod +x bazel-*
./bazel-*
export PATH=/usr/local/bin:$PATH popd
centos 7.4 can not install `dnf`from epel
WARNING: EPEL 7 DNF is very old and has issues to include security flaws. This appears to be the reason it was removed. That said here is the work around to get it working on Centos 7.
cat > /etc/yum.repos.d/dnf-stack-el7.repo << EOF
[dnf-stack-el7]
name=Copr repo for dnf-stack-el7 owned by @rpm-software-management
baseurl=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/epel-7-\$basearch/
skip_if_unavailable=True
gpgcheck=
gpgkey=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/pubkey.gpg
enabled=
enabled_metadata=
EOF yum install dnf
centos 7会出现这个bug:
dnf copr plugin not present in dnf-plugins-core
因为EPEL 7 DNF 已经被移除了centos 7 install dn,还需要:
wget http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-plugins-core-0.1.5-3.sdl7.noarch.rpm
dnf install copr-cli
sudo dnf update
dnf copr enable vbatts/bazel
centos 可以直接安装bazel下:
wget https://copr.fedorainfracloud.org/coprs/vbatts/bazel/repo/epel-7/vbatts-bazel-epel-7.repo -P /etc/yum.repos.d/
yum install dnf-plugins-core-0.1.-.sdl7.noarch.rpm
yum install bazel
git clone https://github.com/tensorflow/tensorflow tensorflow
cd tensorflow
Compiling TensorFlow with Intel C Compiler
CC=icc bazel build --verbose_failures --config=mkl --copt=-msse4.2 --copt="-DEIGEN_USE_VML" -c opt //tensorflow/tools/pip_package:build_pip_package
bazel build --config=mkl -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mavx512f --copt=-mavx512dq --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt="-DEIGEN_USE_VML" //tensorflow/tools/pip_package:build_pip_package
Build and Install TensorFlow* on Intel® Architecture
build tensorflow container:
more @ github
ref build-dev-container.sh @github tensorflow docker
# source tf-docker.evn
# cat tf-docker.evn
# The script set the following environment variables for tf docker:
export TF_DOCKER_BUILD_TYPE=mkl
# export TF_DOCKER_BUILD_TYPE=CPU
# CPU or GPU image export TF_DOCKER_BUILD_IS_DEVEL=YES
# Is this developer image export TF_DOCKER_BUILD_DEVEL_BRANCH=r1.
# export TF_DOCKER_BUILD_DEVEL_BRANCH=master
# (Required if TF_DOCKER_BUILD_IS_DEVEL is YES)
# Specifies the branch to checkout for devel docker images # export TF_DOCKER_BUILD_CENTRAL_PIP
# (Optional)
# If set to a non-empty string, will use it as the URL from which the
# pip wheel file will be downloaded (instead of building the pip locally). # export TF_DOCKER_BUILD_CENTRAL_PIP_IS_LOCAL
# (Optional)
# If set to a non-empty string, we will treat TF_DOCKER_BUILD_CENTRAL_PIP
# as a path rather than a url. export TF_DOCKER_BUILD_IMAGE_NAME=native-mkl-tf
# (Optional)
# If set to any non-empty value, will use it as the image of the
# newly-built image. If not set, the tag prefix tensorflow/tensorflow
# will be used. # export TF_DOCKER_BUILD_VERSION:
# (Optinal)
# If set to any non-empty value, will use the version (e.g., 0.8.) as the
# tag prefix of the image. Additional strings, e.g., "-devel-gpu", will be
# appended to the tag. If not set, the default tag prefix "latest" will be
# used. # export TF_DOCKER_BUILD_PORT
# (Optional)
# If set to any non-empty and valid port number, will use that port number
# during basic checks on the newly-built docker image. # export TF_DOCKER_BUILD_PUSH_CMD
# (Optional)
# If set to a valid binary/script path, will call the script with the final
# tagged image name with an argument, to push the image to a central repo
# such as gcr.io or Docker Hub. # export TF_DOCKER_BUILD_PUSH_WITH_CREDENTIALS
# (Optional)
# Do not set this along with TF_DOCKER_BUILD_PUSH_CMD. We will push with the
# direct commands as opposed to a script. # export TF_DOCKER_USERNAME
# (Optional)
# Dockerhub username for pushing a package. # export TF_DOCKER_EMAIL
# (Optional)
# Dockerhub email for pushing a package. # export TF_DOCKER_PASSWORD
# (Optional)
# Dockerhub password for pushing a package. # export TF_DOCKER_BUILD_PYTHON_VERSION
# (Optional)
# Specifies the desired Python version. Defaults to PYTHON2. # export TF_DOCKER_BUILD_OPTIONS
# (Optional)
# Specifies the desired build options. Defaults to OPT.
参考:
install 中文版
pip install mock
conda install for TensorFlow and Intel Distribution for Python upgrade from 2017 to 2018
Intel® Computer Vision(CV) SDK
Intel's Deep Learning Inference Engine Developer Guide
inference-engine-devguide-introduction
Configuring Model Optimizer for TensorFlow* Prerequisites
Converting Your TensorFlow* Model
Configuring Model Optimizer for TensorFlow* Prerequisites
应用相关的论文
Pedestrian Detection Using TensorFlow* on Intel® Architecture
构建安装TensorFlow* Serving on Intel® Architecture
Train and Use a TensorFlow* Model on Intel® Architecture
Using the Model Optimizer to Convert TensorFlow* Models
tensorflow intel platform 优化的更多相关文章
- TensorFlow实现与优化深度神经网络
TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...
- 好用的函数,assert,random.sample,seaborn tsplot, tensorflow.python.platform flags 等,持续更新
python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列 ...
- 编译TensorFlow CPU指令集优化版
编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...
- TensorFlow 学习(十五)—— tensorflow.python.platform
tensorflow.python.platform 下的常用工具类和工具函数:tensorflow/tensorflow/python/platform at master · tensorflow ...
- 2019-09-16 16:42:03.621946: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Traceback (most recent cal
-- ::] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ...
- W tensorflow/core/platform/cpu_feature_guard.cc:45]
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 ...
- TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...
- Tensorflow 中的优化器解析
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I: t ...
- 『TensorFlow』梯度优化相关
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...
随机推荐
- InstallShield :cannot rename directory ...
InstallShield项目编译的生成目录文件夹需要关闭.
- CSS position &居中(水平,垂直)
css position是个很重要的知识点: 知乎Header部分: 知乎Header-inner部分: position属性值: fixed:生成绝对定位的元素,相对浏览器窗口进行定位(位置可通过: ...
- 认识ZTree
ZTree基本知识 zTree 是一个依靠 jQuery 实现的多功能 “树插件”.优异的性能.灵活的配置.多种功能的组合是 zTree 最大优点. 一.最简单的树(标准的json数据): 1.set ...
- hdu5294 网络流+dijskstr
题意:给你n个墓室,m条路径,一个人在1号墓室(起点),另一个人在n号墓室(终点),起点的那个人只有通过最短路径才能追上终点的那个人,而终点的那个人能切断任意路径. 第一问——终点那人要使起点那人不能 ...
- Python 6 -- 构建一个Web应用
用Flask Web框架,实现浏览器页面交互.在此之前需要了解web的基本工作流程,可参照https://blog.csdn.net/m0_37466453/article/details/72752 ...
- python seek()方法报错:“io.UnsupportedOperation: can't do nonzero cur-relative seeks”
今天使用seek()时报错了, 看下图 然后就百度了一下,找到了解决方法 这篇博客https://www.cnblogs.com/xisheng/p/7636736.html 帮忙解决了问题, 照理说 ...
- Njinx配置
参考地址: NGINX的百度百科:https://baike.baidu.com/item/nginx/3817705?fr=aladdin NGINX的中文网站:http://www.nginx.c ...
- java中的神奇"this"
java中的神奇"this",神奇的原因事它能不用new就可以直接创造一个对象出来,后来研究发现,其实java的“this”使用时,也是"new"了一个当前的对 ...
- 项目方说性能达到百万TPS,如何测试它的可信度?
项目方说性能达到百万TPS,如何测试它的可信度? 应用系统性能提升的关键在于运维端的接入管理模型(AAA,认证 Authentication.授权 Authorization.计费 Accountin ...
- 如何避免Scrum敏捷开发团队反思会形式化,海星法介绍
如何避免Scrum敏捷开发团队反思会形式化? 迭代压力很大,根本没时间,而且,反思会上大家都在互相推脱责任,会议成了“批斗大会”,所以团队的人都觉得这个会很鸡肋. 很多团队在开反思会时是这么干的:产品 ...