intel平台优化

TensorFlow *是深度学习领域中主要使用的机器学习框架,要求高效利用计算资源。 为了充分利用英特尔架构和提高性能,TensorFlow *库已经使用英特尔MKL-DNN原语进行了优化,该原语是深度学习应用的流行性能库。

已进行优化的平台

有三种安装方式。

1. 使用pip

pip install -i https://pypi.anaconda.org/intel/simple tensorflow

2. anaconda 安装

video

3.  自己编译

前两种方式可能不支持最新的指令集。

首先安装 dnf Bazel

安装 Bazel

pushd /var/tmp

URL=https://github.com/bazelbuild/bazel/releases/latest
LASTURL=$(curl $URL -s -L -I -o /dev/null -w '%{url_effective}')
BZ_VERSION=${LASTURL##*/}
wget https://github.com/bazelbuild/bazel/releases/download/$BZ_VERSION/bazel-$BZ_VERSION-installer-linux-x86_64.sh chmod +x bazel-*
./bazel-*
export PATH=/usr/local/bin:$PATH popd

centos 7.4 can not install `dnf`from epel

WARNING: EPEL 7 DNF is very old and has issues to include security flaws. This appears to be the reason it was removed. That said here is the work around to get it working on Centos 7.

cat  >  /etc/yum.repos.d/dnf-stack-el7.repo << EOF
[dnf-stack-el7]
name=Copr repo for dnf-stack-el7 owned by @rpm-software-management
baseurl=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/epel-7-\$basearch/
skip_if_unavailable=True
gpgcheck=
gpgkey=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/pubkey.gpg
enabled=
enabled_metadata=
EOF yum install dnf

centos 7会出现这个bug:

dnf copr plugin not present in dnf-plugins-core

因为EPEL 7 DNF 已经被移除了centos 7 install dn,还需要:

wget http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-plugins-core-0.1.5-3.sdl7.noarch.rpm

dnf install copr-cli

sudo dnf update

dnf copr enable vbatts/bazel

centos 可以直接安装bazel下:

wget https://copr.fedorainfracloud.org/coprs/vbatts/bazel/repo/epel-7/vbatts-bazel-epel-7.repo -P /etc/yum.repos.d/
yum install dnf-plugins-core-0.1.-.sdl7.noarch.rpm
yum install bazel

install tf:

git clone https://github.com/tensorflow/tensorflow tensorflow
cd tensorflow

Compiling TensorFlow with Intel C Compiler

CC=icc bazel build --verbose_failures --config=mkl --copt=-msse4.2 --copt="-DEIGEN_USE_VML" -c opt //tensorflow/tools/pip_package:build_pip_package

bazel build --config=mkl -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mavx512f --copt=-mavx512dq --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt="-DEIGEN_USE_VML" //tensorflow/tools/pip_package:build_pip_package

Build and Install TensorFlow* on Intel® Architecture

build tensorflow container:

more @ github

ref build-dev-container.sh  @github tensorflow docker

# source tf-docker.evn

# cat tf-docker.evn

# The script set the following environment variables for tf docker:
export TF_DOCKER_BUILD_TYPE=mkl
# export TF_DOCKER_BUILD_TYPE=CPU
# CPU or GPU image export TF_DOCKER_BUILD_IS_DEVEL=YES
# Is this developer image export TF_DOCKER_BUILD_DEVEL_BRANCH=r1.
# export TF_DOCKER_BUILD_DEVEL_BRANCH=master
# (Required if TF_DOCKER_BUILD_IS_DEVEL is YES)
# Specifies the branch to checkout for devel docker images # export TF_DOCKER_BUILD_CENTRAL_PIP
# (Optional)
# If set to a non-empty string, will use it as the URL from which the
# pip wheel file will be downloaded (instead of building the pip locally). # export TF_DOCKER_BUILD_CENTRAL_PIP_IS_LOCAL
# (Optional)
# If set to a non-empty string, we will treat TF_DOCKER_BUILD_CENTRAL_PIP
# as a path rather than a url. export TF_DOCKER_BUILD_IMAGE_NAME=native-mkl-tf
# (Optional)
# If set to any non-empty value, will use it as the image of the
# newly-built image. If not set, the tag prefix tensorflow/tensorflow
# will be used. # export TF_DOCKER_BUILD_VERSION:
# (Optinal)
# If set to any non-empty value, will use the version (e.g., 0.8.) as the
# tag prefix of the image. Additional strings, e.g., "-devel-gpu", will be
# appended to the tag. If not set, the default tag prefix "latest" will be
# used. # export TF_DOCKER_BUILD_PORT
# (Optional)
# If set to any non-empty and valid port number, will use that port number
# during basic checks on the newly-built docker image. # export TF_DOCKER_BUILD_PUSH_CMD
# (Optional)
# If set to a valid binary/script path, will call the script with the final
# tagged image name with an argument, to push the image to a central repo
# such as gcr.io or Docker Hub. # export TF_DOCKER_BUILD_PUSH_WITH_CREDENTIALS
# (Optional)
# Do not set this along with TF_DOCKER_BUILD_PUSH_CMD. We will push with the
# direct commands as opposed to a script. # export TF_DOCKER_USERNAME
# (Optional)
# Dockerhub username for pushing a package. # export TF_DOCKER_EMAIL
# (Optional)
# Dockerhub email for pushing a package. # export TF_DOCKER_PASSWORD
# (Optional)
# Dockerhub password for pushing a package. # export TF_DOCKER_BUILD_PYTHON_VERSION
# (Optional)
# Specifies the desired Python version. Defaults to PYTHON2. # export TF_DOCKER_BUILD_OPTIONS
# (Optional)
# Specifies the desired build options. Defaults to OPT.

参考:

MPI教程

tensorflow MPI

build tensorflow

build

install 中文版

pip install mock

REF:

学习课程

more info

conda install for TensorFlow and Intel Distribution for Python upgrade from 2017 to 2018

DNF (Dandified Yum)

Intel® Computer Vision(CV) SDK

Intel's Deep Learning Inference Engine Developer Guide

inference-engine-devguide-introduction

Configuring Model Optimizer for TensorFlow* Prerequisites

Configuring Caffe*

Converting Your TensorFlow* Model

Configuring Model Optimizer for TensorFlow* Prerequisites

What is Intel® DAAL?

应用相关的论文

Pedestrian Detection Using TensorFlow* on Intel® Architecture

tensorflow 监测交通灯

CIFAR-10 分类-tensorflow

构建安装TensorFlow* Serving on Intel® Architecture

Train and Use a TensorFlow* Model on Intel® Architecture

Using the Model Optimizer to Convert TensorFlow* Models

视频 Performance Optimization of Deep Learning Frameworks Caffe* and TensorFlow* for the Intel® Xeon Phi™ Product Family

单节点完整使用教程

tensorflow intel platform 优化的更多相关文章

  1. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  2. 好用的函数,assert,random.sample,seaborn tsplot, tensorflow.python.platform flags 等,持续更新

    python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列 ...

  3. 编译TensorFlow CPU指令集优化版

    编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...

  4. TensorFlow 学习(十五)—— tensorflow.python.platform

    tensorflow.python.platform 下的常用工具类和工具函数:tensorflow/tensorflow/python/platform at master · tensorflow ...

  5. 2019-09-16 16:42:03.621946: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Traceback (most recent cal

    -- ::] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ...

  6. W tensorflow/core/platform/cpu_feature_guard.cc:45]

    W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 ...

  7. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  8. Tensorflow 中的优化器解析

    Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  t ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

随机推荐

  1. Appium环境搭建(一)

    python环境做测试,需要准备工具如下: 1.python2.7(这里使用的是python2你也可以选更高版本) 2.Appium(Window版) 3.Android SDK 4.Appium_P ...

  2. 实验:记录一则删除GI的过程

    环境: RHEL 6.5 + Oracle GI 11.2.0.4 (2 nodes) 参考MOS文档 How to Deconfigure/Reconfigure(Rebuild OCR) or D ...

  3. scrapy yield

    生成器 一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环 ...

  4. 导入转储文件的时候:Error Code: 1406. Data too long for column - MySQL

    MySQL will truncate any insert value that exceeds the specified column width. to make this without e ...

  5. uvm设计分析——tlm

    tlm模块,用来在不同模块之间实现实时通信,主要基于两个定义在通信双方的port类来实现. 两个port之间,通过connect函数,来拿到双方的class指针,进而调用对方的function. 但是 ...

  6. Attention Is All You Need 一些好的资料

    The encoders are all identical in structure (yet they do not share weights). Each one is broken down ...

  7. 擠出機步進馬達的 Steps per Unit 該如何計算?

    擠出機步進馬達的 Steps per Unit 該如何計算?   這邊 Steps per Unit 指的是塑料往前推進1mm,步進馬達須要走幾步.依此定義,可知計算方式可以用 步進馬達轉一圈需要的步 ...

  8. Spring boot 入门配置

    1,maven 的pom 文件里面引入 <!-- spring boot 父节点依赖,引入这个之后相关的引入就不需要添加version配置,spring boot会自动选择最合适的版本进行添加. ...

  9. python 内置函数 sorted()

    sorted() 函数对所有可迭代的对象进行排序操作. sort 与 sorted 区别: sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作. list 的 s ...

  10. C# 自定义承载控件

    例如ToolStripTextBox类,里面的封装就是一个TextBox控件..NET的类库提供了ToolStripComBox和ToolStripProgressBar两个类.这些类都是从ToolS ...