intel平台优化

TensorFlow *是深度学习领域中主要使用的机器学习框架,要求高效利用计算资源。 为了充分利用英特尔架构和提高性能,TensorFlow *库已经使用英特尔MKL-DNN原语进行了优化,该原语是深度学习应用的流行性能库。

已进行优化的平台

有三种安装方式。

1. 使用pip

pip install -i https://pypi.anaconda.org/intel/simple tensorflow

2. anaconda 安装

video

3.  自己编译

前两种方式可能不支持最新的指令集。

首先安装 dnf Bazel

安装 Bazel

pushd /var/tmp

URL=https://github.com/bazelbuild/bazel/releases/latest
LASTURL=$(curl $URL -s -L -I -o /dev/null -w '%{url_effective}')
BZ_VERSION=${LASTURL##*/}
wget https://github.com/bazelbuild/bazel/releases/download/$BZ_VERSION/bazel-$BZ_VERSION-installer-linux-x86_64.sh chmod +x bazel-*
./bazel-*
export PATH=/usr/local/bin:$PATH popd

centos 7.4 can not install `dnf`from epel

WARNING: EPEL 7 DNF is very old and has issues to include security flaws. This appears to be the reason it was removed. That said here is the work around to get it working on Centos 7.

cat  >  /etc/yum.repos.d/dnf-stack-el7.repo << EOF
[dnf-stack-el7]
name=Copr repo for dnf-stack-el7 owned by @rpm-software-management
baseurl=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/epel-7-\$basearch/
skip_if_unavailable=True
gpgcheck=
gpgkey=https://copr-be.cloud.fedoraproject.org/results/@rpm-software-management/dnf-stack-el7/pubkey.gpg
enabled=
enabled_metadata=
EOF yum install dnf

centos 7会出现这个bug:

dnf copr plugin not present in dnf-plugins-core

因为EPEL 7 DNF 已经被移除了centos 7 install dn,还需要:

wget http://springdale.math.ias.edu/data/puias/unsupported/7/x86_64/dnf-plugins-core-0.1.5-3.sdl7.noarch.rpm

dnf install copr-cli

sudo dnf update

dnf copr enable vbatts/bazel

centos 可以直接安装bazel下:

wget https://copr.fedorainfracloud.org/coprs/vbatts/bazel/repo/epel-7/vbatts-bazel-epel-7.repo -P /etc/yum.repos.d/
yum install dnf-plugins-core-0.1.-.sdl7.noarch.rpm
yum install bazel

install tf:

git clone https://github.com/tensorflow/tensorflow tensorflow
cd tensorflow

Compiling TensorFlow with Intel C Compiler

CC=icc bazel build --verbose_failures --config=mkl --copt=-msse4.2 --copt="-DEIGEN_USE_VML" -c opt //tensorflow/tools/pip_package:build_pip_package

bazel build --config=mkl -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-mavx512f --copt=-mavx512dq --copt=-mavx512cd --copt=-mavx512bw --copt=-mavx512vl --copt="-DEIGEN_USE_VML" //tensorflow/tools/pip_package:build_pip_package

Build and Install TensorFlow* on Intel® Architecture

build tensorflow container:

more @ github

ref build-dev-container.sh  @github tensorflow docker

# source tf-docker.evn

# cat tf-docker.evn

# The script set the following environment variables for tf docker:
export TF_DOCKER_BUILD_TYPE=mkl
# export TF_DOCKER_BUILD_TYPE=CPU
# CPU or GPU image export TF_DOCKER_BUILD_IS_DEVEL=YES
# Is this developer image export TF_DOCKER_BUILD_DEVEL_BRANCH=r1.
# export TF_DOCKER_BUILD_DEVEL_BRANCH=master
# (Required if TF_DOCKER_BUILD_IS_DEVEL is YES)
# Specifies the branch to checkout for devel docker images # export TF_DOCKER_BUILD_CENTRAL_PIP
# (Optional)
# If set to a non-empty string, will use it as the URL from which the
# pip wheel file will be downloaded (instead of building the pip locally). # export TF_DOCKER_BUILD_CENTRAL_PIP_IS_LOCAL
# (Optional)
# If set to a non-empty string, we will treat TF_DOCKER_BUILD_CENTRAL_PIP
# as a path rather than a url. export TF_DOCKER_BUILD_IMAGE_NAME=native-mkl-tf
# (Optional)
# If set to any non-empty value, will use it as the image of the
# newly-built image. If not set, the tag prefix tensorflow/tensorflow
# will be used. # export TF_DOCKER_BUILD_VERSION:
# (Optinal)
# If set to any non-empty value, will use the version (e.g., 0.8.) as the
# tag prefix of the image. Additional strings, e.g., "-devel-gpu", will be
# appended to the tag. If not set, the default tag prefix "latest" will be
# used. # export TF_DOCKER_BUILD_PORT
# (Optional)
# If set to any non-empty and valid port number, will use that port number
# during basic checks on the newly-built docker image. # export TF_DOCKER_BUILD_PUSH_CMD
# (Optional)
# If set to a valid binary/script path, will call the script with the final
# tagged image name with an argument, to push the image to a central repo
# such as gcr.io or Docker Hub. # export TF_DOCKER_BUILD_PUSH_WITH_CREDENTIALS
# (Optional)
# Do not set this along with TF_DOCKER_BUILD_PUSH_CMD. We will push with the
# direct commands as opposed to a script. # export TF_DOCKER_USERNAME
# (Optional)
# Dockerhub username for pushing a package. # export TF_DOCKER_EMAIL
# (Optional)
# Dockerhub email for pushing a package. # export TF_DOCKER_PASSWORD
# (Optional)
# Dockerhub password for pushing a package. # export TF_DOCKER_BUILD_PYTHON_VERSION
# (Optional)
# Specifies the desired Python version. Defaults to PYTHON2. # export TF_DOCKER_BUILD_OPTIONS
# (Optional)
# Specifies the desired build options. Defaults to OPT.

参考:

MPI教程

tensorflow MPI

build tensorflow

build

install 中文版

pip install mock

REF:

学习课程

more info

conda install for TensorFlow and Intel Distribution for Python upgrade from 2017 to 2018

DNF (Dandified Yum)

Intel® Computer Vision(CV) SDK

Intel's Deep Learning Inference Engine Developer Guide

inference-engine-devguide-introduction

Configuring Model Optimizer for TensorFlow* Prerequisites

Configuring Caffe*

Converting Your TensorFlow* Model

Configuring Model Optimizer for TensorFlow* Prerequisites

What is Intel® DAAL?

应用相关的论文

Pedestrian Detection Using TensorFlow* on Intel® Architecture

tensorflow 监测交通灯

CIFAR-10 分类-tensorflow

构建安装TensorFlow* Serving on Intel® Architecture

Train and Use a TensorFlow* Model on Intel® Architecture

Using the Model Optimizer to Convert TensorFlow* Models

视频 Performance Optimization of Deep Learning Frameworks Caffe* and TensorFlow* for the Intel® Xeon Phi™ Product Family

单节点完整使用教程

tensorflow intel platform 优化的更多相关文章

  1. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  2. 好用的函数,assert,random.sample,seaborn tsplot, tensorflow.python.platform flags 等,持续更新

    python 中好用的函数,random.sample等,持续更新 random.sample random.sample的函数原型为:random.sample(sequence, k),从指定序列 ...

  3. 编译TensorFlow CPU指令集优化版

    编译TensorFlow CPU指令集优化版 如题,CPU指令集优化版,说的是针对某种特定的CPU型号进行过优化的版本.通常官方给的版本是没有针对特定CPU进行过优化的,有网友称,优化过的版本相比优化 ...

  4. TensorFlow 学习(十五)—— tensorflow.python.platform

    tensorflow.python.platform 下的常用工具类和工具函数:tensorflow/tensorflow/python/platform at master · tensorflow ...

  5. 2019-09-16 16:42:03.621946: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Traceback (most recent cal

    -- ::] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ...

  6. W tensorflow/core/platform/cpu_feature_guard.cc:45]

    W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 ...

  7. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  8. Tensorflow 中的优化器解析

    Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  t ...

  9. 『TensorFlow』梯度优化相关

    tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...

随机推荐

  1. CentOS6.5 安装openssl

    安装比较简单! 1.下载安装包 [root@mycentos ~]# wget http://www.openssl.org/source/openssl-1.0.2f.tar.gz 2.解压和编译 ...

  2. Android提权漏洞CVE-2014-7920、CVE-2014-7921

  3. css省...和div 内容过多,自动换行

    1.shengluohao 就是这个... 加: overflow: hidden;/*超出部分隐藏*/ white-space: nowrap;/*不换行*/ text-overflow:ellip ...

  4. webpack的使用一

    1.为什么使用webpack 模块化,让我们可以把复杂的程序细化为小的文件; 类似于TypeScript这种在JavaScript基础上拓展的开发语言:使我们能够实现目前版本的JavaScript不能 ...

  5. Javascript-购物车结算-案例

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  6. javaweb之验证码验证技术

    今天学习了一个验证码校验技术,所以就写下了一些笔记,方便日后查看.首先创建web工程 1.然后在src目录下创建一个Servlet类,此类用来显示登录页面和错误信息提示 package com.LHB ...

  7. PDO数据访问抽象层(上)

    PDO比MySQLi功能强大 PDO可以访问MySQL及其它数据库 一.造对象 <?php $dsn = "mysql:dbname = crud;host = localhost&q ...

  8. HashMap(JDK1.8)

      四个构造函数: 构造方法只是赋值属性初始值但是不会真正初始化数组表空间,在第一次添加元素时形成数组表空间.这个和以往的jDK1.7之前的不同,1.7之前的都是在构造里初始化了table数组空间. ...

  9. Keras 处理 不平衡的数据的分类问题 imbalance data 或者 highly skewed data

    处理不平衡的数据集的时候,可以使用对数据加权来提高数量较小类的被选中的概率,具体方式如下 fit(self, x, y, batch_size=32, nb_epoch=10, verbose=1, ...

  10. Azure Event Hub 技术研究系列1-Event Hub入门篇

    前两个系列研究了Azure IoT Hub和Azure Messaging.最近准备继续研究Azure Event Hub,即Azure的事件中心.首先, Azure Event Hub的官方介绍: ...