block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何
小结:
1、block diagonal matrix 直和 块对角矩阵
A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices, such that the off-diagonal blocks are zero matrices. A block diagonal matrix A has the form
where Ak is a square matrix; in other words, matrix A is the direct sum of A1, …, An. It can also be indicated as A1 ⊕ A2 ⊕ … ⊕ An or diag(A1, A2, …, An) (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.
In linear algebra, a square matrix {\displaystyle A} is called diagonalizable or nondefective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix {\displaystyle P}
such that {\displaystyle P^{-1}AP}
is a diagonal matrix. If {\displaystyle V}
is a finite-dimensional vector space, then a linear map {\displaystyle T:V\mapsto V}
is called diagonalizable if there exists an ordered basis of {\displaystyle V}
with respect to which {\displaystyle T}
is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix that is not diagonalizable is called defective.
Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle; once their eigenvalues and eigenvectors are known, one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power, and the determinant of a diagonal matrix is simply the product of all diagonal entries. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries).
代数角度 幂、行列式 对角元素的处理
几何角度 不同轴的扩缩 不同的方向不同的扩缩因子
同源异型转换
https://en.wikipedia.org/wiki/Homothetic_transformation

https://en.wikipedia.org/wiki/Scaling_(geometry)
缩放 是 线性变换,是一种相似变换;相似变换多数是非线性的。
Scaling is a linear transformation, and a special case of homothetic transformation. In most cases, the homothetic transformations are non-linear transformations.
Matrix representation
A scaling can be represented by a scaling matrix. To scale an object by a vector v = (vx, vy, vz), each point p = (px, py, pz) would need to be multiplied with this scaling matrix:
As shown below, the multiplication will give the expected result:
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three.
The scaling is uniform if and only if the scaling factors are equal (vx = vy = vz). If all except one of the scale factors are equal to 1, we have directional scaling.
In the case where vx = vy = vz = k, scaling increases the area of any surface by a factor of k2 and the volume of any solid object by a factor of k3.
isotropic
uniform scaling
各向同性 缩放

block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何的更多相关文章
- RS布局问题之块的不完美之完美
早上一来,便传来喜讯...说我们做的报表太美.客户不敢看----于是便开启征程,亲自尝试了一把,如下面的操作,首次运行报表,在不考虑UI美观度的情况下,报表还是 在预测范围内显示的 那么接下来我们选择 ...
- block(data block,directory block)、inode、块位图、inode位图和super block概念详解【转】
本文转载自:https://blog.csdn.net/jhndiuowehu/article/details/50788287 一.基本概念: 1.block:文件系统中存储数据的最小单元 ...
- BBM(Bad Block Management)坏块管理
不管WL算法如何高明,在使用中都会碰到一个头痛的问题,那就是坏块,所以一个SSD必须要有坏块管理机制.何谓坏块?一个闪存块里包含有不稳定的地址,不能保证读/写/擦时数据的准确性. ...
- 【code block】局部代码块+构造代码块+静态代码块
1.局部代码块 位置:位于类的方法中 表示方法:{} 作用:控制变量的生命周期,减少内存消耗 demo: public class LocalCode { public static void mai ...
- 04OC之分类Category,协议Protocol,Copy,代码块block
一.Protocol协议 我们都知道,在C#有个规范称之为接口,就是规范一系列的行为,事物.在C#中是使用Interface关键字来声明一个接口的,但是在OC中interface是用来声明类,所以用了 ...
- 从C#到Objective-C,循序渐进学习苹果开发(4)--代码块(block)和错误异常处理的理解
本随笔系列主要介绍从一个Windows平台从事C#开发到Mac平台苹果开发的一系列感想和体验历程,本系列文章是在起步阶段逐步积累的,希望带给大家更好,更真实的转换历程体验.本文继续上一篇随笔<从 ...
- Oracle corrupt block(坏块) 详解
转自:http://blog.csdn.net/tianlesoftware/article/details/5024966 一. 坏块说明 1.1 相关链接 在看坏块之前,先看几个相关的链接,在后面 ...
- 块对象block小结
blcok的形式 ^(参数列){主体} block作为返回值
- 代码块(Block)回调一般阐述
本章教程主要对代码块回调模式进行讲解,已经分析其他回调的各种优缺点和适合的使用场景. 代码块机制 Block变量类型 Block代码封装及调用 Block变量对普通变量作用域的影响 Block回调接口 ...
随机推荐
- C#-MVC开发微信应用(5)--自动应答系统-自动回复机器人
前几篇已经介绍菜单和有回复信息操作,下面我们就结合snf微信端管理页面,看一下什么才是自动应答系统. 定制的服务 对于微信服务号来说,最主要的功能是提供更好的服务.用户更方便的操作,以及更快的反馈响应 ...
- [svc]tomcat配置文件详解-最简单的基于mvn的war包
tomcat安全管理规范 java&tomcat配置参考(多看看这位大牛的博客,写的很好) Tomcat系列之Java技术详解 http://blog.51cto.com/freeloda/1 ...
- net use错误原因解决(精辟)(转)
(1)"发生系统错误 1326. 登录失败: 未知的用户名或错误密码." 在远程机的"控制面板-文件夹选项-查看-简单的文件共享",去掉选取,然后再尝试连接 ...
- centos7环境安装rabbitMQ
使用专业的消息队列产品rabbitmq之centos7环境安装 http://www.cnblogs.com/huangxincheng/p/6006569.html [源码安装,适用GNOME + ...
- GitHub私有代码库将免费开放
1月8号消息,微软收购 GitHub 后,官方宣布了一项重大更新:免费开放私有代码库, 即 GitHub 用户现在可以免费创建无限量的私有存储库.同时还有另一项更新——GitHub Enterpris ...
- Linux+树莓派3开发总结——树莓派远程文件共享winows
http://blog.csdn.net/xqf1528399071/article/details/52192134 ———————————————————————————————————————— ...
- Java知多少(94)键盘事件
键盘事件的事件源一般丐组件相关,当一个组件处于激活状态时,按下.释放或敲击键盘上的某个键时就会发生键盘事件.键盘事件的接口是KeyListener,注册键盘事件监视器的方法是addKeyListene ...
- Java反射,参数为数组
使用反射调用非公开的方法有时能解决许多问题,如果方法的参数是数组时类型该怎么传递呢?这里找到了一种方法记录一下 实例 比如: class A{ private void sayHello(String ...
- java-信息安全(十五)-单向认证
原文地址 http://snowolf.iteye.com/blog/398198 接下来,我们使用第三方CA签名机构完成证书签名. 这里我们使用thawte提供的测试用21天免费ca证书. ...
- 超简单Windows安装Scrapy (仅需一步)
网上很多关于windows安装Scrapy的教程都非常的繁琐,请看我给大家分享的教程,非常简单 一步完成. 超简单的安装方法: 下载地址: https://www.continuum.io/downl ...