block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何
小结:
1、block diagonal matrix 直和 块对角矩阵
A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices, such that the off-diagonal blocks are zero matrices. A block diagonal matrix A has the form
where Ak is a square matrix; in other words, matrix A is the direct sum of A1, …, An. It can also be indicated as A1 ⊕ A2 ⊕ … ⊕ An or diag(A1, A2, …, An) (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.
In linear algebra, a square matrix {\displaystyle A} is called diagonalizable or nondefective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix {\displaystyle P}
such that {\displaystyle P^{-1}AP}
is a diagonal matrix. If {\displaystyle V}
is a finite-dimensional vector space, then a linear map {\displaystyle T:V\mapsto V}
is called diagonalizable if there exists an ordered basis of {\displaystyle V}
with respect to which {\displaystyle T}
is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix that is not diagonalizable is called defective.
Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle; once their eigenvalues and eigenvectors are known, one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power, and the determinant of a diagonal matrix is simply the product of all diagonal entries. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries).
代数角度 幂、行列式 对角元素的处理
几何角度 不同轴的扩缩 不同的方向不同的扩缩因子
同源异型转换
https://en.wikipedia.org/wiki/Homothetic_transformation

https://en.wikipedia.org/wiki/Scaling_(geometry)
缩放 是 线性变换,是一种相似变换;相似变换多数是非线性的。
Scaling is a linear transformation, and a special case of homothetic transformation. In most cases, the homothetic transformations are non-linear transformations.
Matrix representation
A scaling can be represented by a scaling matrix. To scale an object by a vector v = (vx, vy, vz), each point p = (px, py, pz) would need to be multiplied with this scaling matrix:
As shown below, the multiplication will give the expected result:
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three.
The scaling is uniform if and only if the scaling factors are equal (vx = vy = vz). If all except one of the scale factors are equal to 1, we have directional scaling.
In the case where vx = vy = vz = k, scaling increases the area of any surface by a factor of k2 and the volume of any solid object by a factor of k3.
isotropic
uniform scaling
各向同性 缩放

block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何的更多相关文章
- RS布局问题之块的不完美之完美
早上一来,便传来喜讯...说我们做的报表太美.客户不敢看----于是便开启征程,亲自尝试了一把,如下面的操作,首次运行报表,在不考虑UI美观度的情况下,报表还是 在预测范围内显示的 那么接下来我们选择 ...
- block(data block,directory block)、inode、块位图、inode位图和super block概念详解【转】
本文转载自:https://blog.csdn.net/jhndiuowehu/article/details/50788287 一.基本概念: 1.block:文件系统中存储数据的最小单元 ...
- BBM(Bad Block Management)坏块管理
不管WL算法如何高明,在使用中都会碰到一个头痛的问题,那就是坏块,所以一个SSD必须要有坏块管理机制.何谓坏块?一个闪存块里包含有不稳定的地址,不能保证读/写/擦时数据的准确性. ...
- 【code block】局部代码块+构造代码块+静态代码块
1.局部代码块 位置:位于类的方法中 表示方法:{} 作用:控制变量的生命周期,减少内存消耗 demo: public class LocalCode { public static void mai ...
- 04OC之分类Category,协议Protocol,Copy,代码块block
一.Protocol协议 我们都知道,在C#有个规范称之为接口,就是规范一系列的行为,事物.在C#中是使用Interface关键字来声明一个接口的,但是在OC中interface是用来声明类,所以用了 ...
- 从C#到Objective-C,循序渐进学习苹果开发(4)--代码块(block)和错误异常处理的理解
本随笔系列主要介绍从一个Windows平台从事C#开发到Mac平台苹果开发的一系列感想和体验历程,本系列文章是在起步阶段逐步积累的,希望带给大家更好,更真实的转换历程体验.本文继续上一篇随笔<从 ...
- Oracle corrupt block(坏块) 详解
转自:http://blog.csdn.net/tianlesoftware/article/details/5024966 一. 坏块说明 1.1 相关链接 在看坏块之前,先看几个相关的链接,在后面 ...
- 块对象block小结
blcok的形式 ^(参数列){主体} block作为返回值
- 代码块(Block)回调一般阐述
本章教程主要对代码块回调模式进行讲解,已经分析其他回调的各种优缺点和适合的使用场景. 代码块机制 Block变量类型 Block代码封装及调用 Block变量对普通变量作用域的影响 Block回调接口 ...
随机推荐
- SNF快速开发平台MVC-高级查询组件
1. 高级查询 在我们做项目的时候经常想要按名称.编号进行查询数据,可在开发时会把最常用的查询条件写上,不常用的就不写了,也是因为把所有字段都写上太多了,布局不好看而且不实用.还有些查询条件几百年 ...
- 文件批量上传-统一附件管理器-在线预览文件(有互联网和没有两种)--SNF快速开发平台3.0
实际上在SNF里使用附件管理是非常简单的事情,一句代码就可以搞定.但我也要在这里记录一下统一附件管理器能满足的需求. 通用的附件管理,不要重复开发,调用尽量简洁. 批量文件上传,并对每个文件大小限制, ...
- C#-MVC开发微信应用(3)--文本消息和图文消息的应答
最近咨询微信的人很多,感觉这块也是一块商机,也为了演示SNF快速开发平台的优势,就用SNF快速开发平台开发出一套微信应用程序.使用<SNF.CodeGenerator>代码生成工具可以节省 ...
- [Android实例] Activity实例StartActivity出现NullPointer异常
[Android实例] Activity实例StartActivity出现NullPointer异常 [android实例教程] 在Android低版本(如2.3.3)中出现如下“界面跳转”的错误: ...
- pythn os
获取文件所在路径 import os os.path.dirname(__file__) 获取当前文件的所在路径 print (os.path.dirname(os.path.dirname(__f ...
- ECMAScript 6 入门之字符串
1.新增字符串的方法 1.字符是否存在 console.log("Yo".indexOf("Y")!=-1); console.log("Yo&quo ...
- js的new Date()日期的使用
<script type="text/javascript"> //js获取某个月的天数 function days(year,month){ var dayCount ...
- 解决:ngxin做http强制跳转https,接口的POST请求变成GET
域名配置了http强制跳转htpps后发现app发起post请求会出现405错误. 所以怀疑是http强制跳转https出现了问题.修改nginx配置如下即可解决: server { listen ; ...
- linux下依赖库的版本问题引起的安装失败:libssl-dev版本问题无法安装 :libssl-dev : 依赖: libssl1.0.0 (= 1.0.1-4ubuntu3) 但是 1.0.1-4ubuntu5.31 正要被安装
依赖库版本问题引起的安装失败解决方法如下有两种: 1.是由于源需要更新,如下操作: libssl-dev : 依赖: libssl0.9.8 (= 0.9.8o-1ubuntu4) 但是 0.9.8o ...
- Nginx系列二:(Nginx Rewrite 规则、Nginx 防盗链、Nginx 动静分离、Nginx+keepalived 实现高可用)
一.Nginx Rewrite 规则 1. Nginx rewrite规则 Rewrite规则含义就是某个URL重写成特定的URL(类似于Redirect),从某种意义上说为了美观或者对搜索引擎友好, ...