block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何
小结:
1、block diagonal matrix 直和 块对角矩阵
A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices, such that the off-diagonal blocks are zero matrices. A block diagonal matrix A has the form
where Ak is a square matrix; in other words, matrix A is the direct sum of A1, …, An. It can also be indicated as A1 ⊕ A2 ⊕ … ⊕ An or diag(A1, A2, …, An) (the latter being the same formalism used for a diagonal matrix). Any square matrix can trivially be considered a block diagonal matrix with only one block.
In linear algebra, a square matrix {\displaystyle A} is called diagonalizable or nondefective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix {\displaystyle P}
such that {\displaystyle P^{-1}AP}
is a diagonal matrix. If {\displaystyle V}
is a finite-dimensional vector space, then a linear map {\displaystyle T:V\mapsto V}
is called diagonalizable if there exists an ordered basis of {\displaystyle V}
with respect to which {\displaystyle T}
is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix that is not diagonalizable is called defective.
Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle; once their eigenvalues and eigenvectors are known, one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power, and the determinant of a diagonal matrix is simply the product of all diagonal entries. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries).
代数角度 幂、行列式 对角元素的处理
几何角度 不同轴的扩缩 不同的方向不同的扩缩因子
同源异型转换
https://en.wikipedia.org/wiki/Homothetic_transformation
https://en.wikipedia.org/wiki/Scaling_(geometry)
缩放 是 线性变换,是一种相似变换;相似变换多数是非线性的。
Scaling is a linear transformation, and a special case of homothetic transformation. In most cases, the homothetic transformations are non-linear transformations.
Matrix representation
A scaling can be represented by a scaling matrix. To scale an object by a vector v = (vx, vy, vz), each point p = (px, py, pz) would need to be multiplied with this scaling matrix:
As shown below, the multiplication will give the expected result:
Such a scaling changes the diameter of an object by a factor between the scale factors, the area by a factor between the smallest and the largest product of two scale factors, and the volume by the product of all three.
The scaling is uniform if and only if the scaling factors are equal (vx = vy = vz). If all except one of the scale factors are equal to 1, we have directional scaling.
In the case where vx = vy = vz = k, scaling increases the area of any surface by a factor of k2 and the volume of any solid object by a factor of k3.
isotropic
uniform scaling
各向同性 缩放
block diagonal matrix 直和 块对角矩阵 不完美 有缺陷 缩放 射影几何的更多相关文章
- RS布局问题之块的不完美之完美
早上一来,便传来喜讯...说我们做的报表太美.客户不敢看----于是便开启征程,亲自尝试了一把,如下面的操作,首次运行报表,在不考虑UI美观度的情况下,报表还是 在预测范围内显示的 那么接下来我们选择 ...
- block(data block,directory block)、inode、块位图、inode位图和super block概念详解【转】
本文转载自:https://blog.csdn.net/jhndiuowehu/article/details/50788287 一.基本概念: 1.block:文件系统中存储数据的最小单元 ...
- BBM(Bad Block Management)坏块管理
不管WL算法如何高明,在使用中都会碰到一个头痛的问题,那就是坏块,所以一个SSD必须要有坏块管理机制.何谓坏块?一个闪存块里包含有不稳定的地址,不能保证读/写/擦时数据的准确性. ...
- 【code block】局部代码块+构造代码块+静态代码块
1.局部代码块 位置:位于类的方法中 表示方法:{} 作用:控制变量的生命周期,减少内存消耗 demo: public class LocalCode { public static void mai ...
- 04OC之分类Category,协议Protocol,Copy,代码块block
一.Protocol协议 我们都知道,在C#有个规范称之为接口,就是规范一系列的行为,事物.在C#中是使用Interface关键字来声明一个接口的,但是在OC中interface是用来声明类,所以用了 ...
- 从C#到Objective-C,循序渐进学习苹果开发(4)--代码块(block)和错误异常处理的理解
本随笔系列主要介绍从一个Windows平台从事C#开发到Mac平台苹果开发的一系列感想和体验历程,本系列文章是在起步阶段逐步积累的,希望带给大家更好,更真实的转换历程体验.本文继续上一篇随笔<从 ...
- Oracle corrupt block(坏块) 详解
转自:http://blog.csdn.net/tianlesoftware/article/details/5024966 一. 坏块说明 1.1 相关链接 在看坏块之前,先看几个相关的链接,在后面 ...
- 块对象block小结
blcok的形式 ^(参数列){主体} block作为返回值
- 代码块(Block)回调一般阐述
本章教程主要对代码块回调模式进行讲解,已经分析其他回调的各种优缺点和适合的使用场景. 代码块机制 Block变量类型 Block代码封装及调用 Block变量对普通变量作用域的影响 Block回调接口 ...
随机推荐
- 格雷码(Gray code)仿真
作者:桂. 时间:2018-05-12 16:25:02 链接:http://www.cnblogs.com/xingshansi/p/9029081.html 前言 FIFO中的计数用的是格雷码, ...
- 瀑布 敏捷 精益 devops
敏捷: 分工角色 大项目分小项目 每个节点时间设置里程碑 Scrum实施的核心可以概括为“化繁为简”,从几个维度解释下: 团队角色的定义,将团队人员定义为三个角色,Scrum Master(主 ...
- Docker for Windows 代理设置(linux container)
https://blog.csdn.net/mzhangsf/article/details/79747979
- Springboot学习笔记(三)-常用注入组件方式
包扫描@ComponentScan+组件标注注解(@Controller.@Service.@Repository.@Component) 包扫描不是必须的,指定包名后以指定的包名为准,比如指定包名为 ...
- Failed to read schema document 'http://code.alibabatech.com/schema/dubbo/dubbo.xsd'问题解决方法
Failed to read schema document 'http://code.alibabatech.com/schema/dubbo/dubbo.xsd'问题解决方法 关于dubbo服务的 ...
- [Artoolkit] Marker of nftSimple
重点看:markers.dat 的解析原理 1. int main(int argc, char** argv) { ]; const char *cparam_name = "Data2/ ...
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- M0 M4时钟控制(一)
时钟控制器为整个芯片提供时钟源,包括系统时钟和所有外围设备时钟.该控制器还通过单独时钟的开或关,时钟源选择和分频器来进行功耗控制.在CPU使能低功耗PDEN(CLK_PWRCTL[7]) 位和Cort ...
- Http 调用netty 服务,服务调用客户端,伪同步响应.ProtoBuf 解决粘包,半包问题.
实际情况是: 公司需要开发一个接口给新产品使用,需求如下 1.有一款硬件设备,客户用usb接上电脑就可以,但是此设备功能比较单一,所以开发一个服务器程序,辅助此设备业务功能 2.解决方案,使用Sock ...
- 部门sonarque代码扫描测试服务器docker化
部门内部的服务器太多了,打算将对应的测试环境docker化. 转成docker后,以后不管是升级调研还是定制化开发测试都方便,就是事情太多,一直没有抽出身来做,今天处理下并把过程记录下来跟大家分享下. ...