根据导出的地方不一样,将这些方式分为三种:
(1)、导出到本地文件系统;
(2)、导出到HDFS中;
(3)、导出到Hive的另一个表中。
为了避免单纯的文字,我将一步一步地用命令进行说明。

一、导出到本地文件系统

  1.   
  2. hive> insert overwrite local directory '/home/wyp/wyp'
  3. > select * from wyp;

复制代码

这条HQL的执行需要启用Mapreduce完成,运行完这条语句之后,将会在本地文件系统的/home/wyp/wyp目录下生成文件,这个文件是Reduce产生的结果(这里生成的文件名是000000_0),我们可以看看这个文件的内容:

  1. [wyp@master ~/wyp]$ vim 000000_0
  2. 5^Awyp1^A23^A131212121212
  3. 6^Awyp2^A24^A134535353535
  4. 7^Awyp3^A25^A132453535353
  5. 8^Awyp4^A26^A154243434355
  6. 1^Awyp^A25^A13188888888888
  7. 2^Atest^A30^A13888888888888
  8. 3^Azs^A34^A899314121

复制代码

可以看出,这就是wyp表中的所有数据。数据中的列与列之间的分隔符是^A(ascii码是\00001)。

和导入数据到Hive不一样,不能用insert into来将数据导出:

  1.   
  2. hive> insert into local directory '/home/wyp/wyp'
  3. > select * from wyp;
  4. NoViableAltException(79@[])
  5. at org.apache.hadoop.hive.ql.parse.HiveParser_SelectClauseParser.selectClause(HiveParser_SelectClauseParser.java:683)
  6. at org.apache.hadoop.hive.ql.parse.HiveParser.selectClause(HiveParser.java:30667)
  7. at org.apache.hadoop.hive.ql.parse.HiveParser.regular_body(HiveParser.java:28421)
  8. at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatement(HiveParser.java:28306)
  9. at org.apache.hadoop.hive.ql.parse.HiveParser.queryStatementExpression(HiveParser.java:28100)
  10. at org.apache.hadoop.hive.ql.parse.HiveParser.execStatement(HiveParser.java:1213)
  11. at org.apache.hadoop.hive.ql.parse.HiveParser.statement(HiveParser.java:928)
  12. at org.apache.hadoop.hive.ql.parse.ParseDriver.parse(ParseDriver.java:190)
  13. at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:418)
  14. at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:337)
  15. at org.apache.hadoop.hive.ql.Driver.run(Driver.java:902)
  16. at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:259)
  17. at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:216)
  18. at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:413)
  19. at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:756)
  20. at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:614)
  21. at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
  22. at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
  23. at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
  24. at java.lang.reflect.Method.invoke(Method.java:597)
  25. at org.apache.hadoop.util.RunJar.main(RunJar.java:212)
  26. FAILED: ParseException line 1:12 missing TABLE at 'local' near 'local' in select clause
  27. line 1:18 cannot recognize input near 'directory' ''/home/wyp/wyp'' 'select' in select clause

复制代码

二、导出到HDFS中
和导入数据到本地文件系统一样的简单,可以用下面的语句实现:

  1.   
  2. hive> insert overwrite directory '/home/wyp/hdfs'
  3. > select * from wyp;

复制代码

将会在HDFS的/home/wyp/hdfs目录下保存导出来的数据。注意,和导出文件到本地文件系统的HQL少一个local,数据的存放路径就不一样了。

三、导出到Hive的另一个表中

这也是Hive的数据导入方式,如下操作:

  1.  
  2. hive> insert into table test
  3. > partition (age='25')
  4. > select id, name, tel
  5. > from wyp;
  6. #####################################################################
  7. 这里输出了一堆Mapreduce任务信息,这里省略
  8. #####################################################################
  9. Total MapReduce CPU Time Spent: 1 seconds 310 msec
  10. OK
  11. Time taken: 19.125 seconds
  12. hive> select * from test;
  13. OK
  14. 5       wyp1    131212121212    25
  15. 6       wyp2    134535353535    25
  16. 7       wyp3    132453535353    25
  17. 8       wyp4    154243434355    25
  18. 1       wyp     13188888888888  25
  19. 2       test    13888888888888  25
  20. 3       zs      899314121       25
  21. Time taken: 0.126 seconds, Fetched: 7 row(s)

复制代码

细心的读者可能会问,怎么导入数据到文件中,数据的列之间为什么不是wyp表设定的列分隔符呢?其实在Hive 0.11.0版本之间,数据的导出是不能指定列之间的分隔符的,只能用默认的列分隔符,也就是上面的^A来分割,这样导出来的数据很不直观,看起来很不方便!
如果你用的Hive版本是0.11.0,那么你可以在导出数据的时候来指定列之间的分隔符。

下面详细介绍:

在Hive0.11.0版本新引进了一个新的特性,也就是当用户将Hive查询结果输出到文件,用户可以指定列的分割符,而在之前的版本是不能指定列之间的分隔符,这样给我们带来了很大的不变,在Hive0.11.0之前版本我们一般是这样用的:

  1. hive> insert overwrite local directory '/home/wyp/Documents/result'
  2. hive> select * from test;

复制代码

保存的文件列之间是用^A(\x01)来分割

  1. 196^A242^A3
  2. 186^A302^A3
  3. 22^A377^A1
  4. 244^A51^A2

复制代码

注意,上面是为了显示方便,而将\x01写作^A,在实际的文本编辑器我们是看不到^A的,而是一个奇怪的符号。

现在我们可以用Hive0.11.0版本新引进了一个新的特性,指定输出结果列之间的分隔符:

  1. hive> insert overwrite local directory '/home/wyp/Documents/result'
  2. hive> row format delimited
  3. hive> fields terminated by '\t'
  4. hive> select * from test;

复制代码

再次看出输出的结果

  1. 196        242        3
  2. 186        302        3
  3. 22        377        1
  4. 244        51        2

复制代码

结果好看多了。如果是map类型可以用下面语句来分割map的key和value

  1. hive> insert overwrite local directory './test-04'
  2. hive> row format delimited
  3. hive> FIELDS TERMINATED BY '\t'
  4. hive> COLLECTION ITEMS TERMINATED BY ','
  5. hive> MAP KEYS TERMINATED BY ':'
  6. hive> select * from src;

复制代码

根据上面内容,我们来进一步操作:

  1. hive> insert overwrite local directory '/home/yangping.wu/local'
  2. > row format delimited
  3. > fields terminated by '\t'
  4. > select * from wyp;

复制代码

  1. [wyp@master ~/local]$ vim 000000_0
  2. 5       wyp1    23      131212121212
  3. 6       wyp2    24      134535353535
  4. 7       wyp3    25      132453535353
  5. 8       wyp4    26      154243434355
  6. 1       wyp     25      13188888888888
  7. 2       test    30      13888888888888
  8. 3       zs      34      899314121

复制代码

其实,我们还可以用hive的-e和-f参数来导出数据。其中-e 表示后面直接接带双引号的sql语句;而-f是接一个文件,文件的内容为一个sql语句,如下:

  1.   
  2. [wyp@master ~/local][        DISCUZ_CODE_26        ]nbsp; hive -e "select * from wyp" >> local/wyp.txt
  3. [wyp@master ~/local][        DISCUZ_CODE_26        ]nbsp; cat wyp.txt
  4. 5       wyp1    23      131212121212
  5. 6       wyp2    24      134535353535
  6. 7       wyp3    25      132453535353
  7. 8       wyp4    26      154243434355
  8. 1       wyp     25      13188888888888
  9. 2       test    30      13888888888888
  10. 3       zs      34      899314121

复制代码

得到的结果也是用\t分割的。也可以用-f参数实现:

  1. [wyp@master ~/local]$ cat wyp.sql
  2. select * from wyp
  3. [wyp@master ~/local]$ hive -f wyp.sql >> local/wyp2.txt

复制代码

上述语句得到的结果也是\t分割的。

014-HQL中级4-Hive中的三种不同的数据导出方式介绍的更多相关文章

  1. Hive中的三种不同的数据导出方式介绍

    问题导读:1.导出本地文件系统和hdfs文件系统区别是什么?2.带有local命令是指导出本地还是hdfs文件系统?3.hive中,使用的insert与传统数据库insert的区别是什么?4.导出数据 ...

  2. 061 hive中的三种join与数据倾斜

    一:hive中的三种join 1.map join 应用场景:小表join大表 一:设置mapjoin的方式: )如果有一张表是小表,小表将自动执行map join. 默认是true. <pro ...

  3. Hive三种不同的数据导出的方式

    转自:http://blog.chinaunix.net/uid-27177626-id-4653808.html Hive三种不同的数据导出的方式,根据导出的地方不一样,将这些方法分为三类:(1)导 ...

  4. 以用户名注册来分析三种Action获取数据的方式

    1.注入属性 直接注入属性: public String userName; public String getUserName() { return userName; } public void ...

  5. Android三种实现自定义ProgressBar的方式介绍

    一.通过动画实现 定义res/anim/loading.xml如下: View Row Code<?xml version="1.0" encoding="UTF- ...

  6. Hive四种数据导入方式介绍

    问题导读 1.从本地文件系统中通过什么命令可导入数据到Hive表? 2.什么是动态分区插入? 3.该如何实现动态分区插入? 扩展: 这里可以和Hive中的三种不同的数据导出方式介绍进行对比? Hive ...

  7. Hive几种数据导出方式

    Hive几种数据导出方式 今天我们再谈谈Hive中的几种不同的数据导出方式.可以根据导出的地方不一样,将这些方式分为三种: (1).导出到本地文件系统: (2).导出到HDFS中: (3).导出到Hi ...

  8. Java三大框架之——Hibernate中的三种数据持久状态和缓存机制

    Hibernate中的三种状态   瞬时状态:刚创建的对象还没有被Session持久化.缓存中不存在这个对象的数据并且数据库中没有这个对象对应的数据为瞬时状态这个时候是没有OID. 持久状态:对象经过 ...

  9. Hive 中的四种排序详解,再也不会混淆用法了

    Hive 中的四种排序 排序操作是一个比较常见的操作,尤其是在数据分析的时候,我们往往需要对数据进行排序,hive 中和排序相关的有四个关键字,今天我们就看一下,它们都是什么作用. 数据准备 下面我们 ...

随机推荐

  1. 为什么对一些矩阵做PCA得到的矩阵少一行?

    很多时候会出现把一个N*M的矩阵做pca(对M降维)之后却得到一个M*(M-1)矩阵这样的结果.之前都是数学推导得到这个结论,但是, 今天看到一个很形象的解释: Consider what PCA d ...

  2. JSONObject与JSONArray

    最近在学习过程中用到了稍微复杂点的json数据需要将json数据解析出来,这里就截取一部分作为例子 1.JSONObject介绍 JSONObject-lib包是一个beans,collections ...

  3. Spring MVC学习之三:处理方法返回值的可选类型

    http://flyer2010.iteye.com/blog/1294400 ———————————————————————————————————————————————————————————— ...

  4. javah 错误: 找不到 'com.example.tony.gpiojni.JNITest' 的类文件

    在 android studio的Terminal中运行javah转换.class文件为.h文件失败, 提示: 错误: 找不到 'com.example.tony.gpiojni.JNITest' 的 ...

  5. MySQL的innodb_flush_log_at_trx_commit配置值的设定

    MySQL的innodb_flush_log_at_trx_commit配置值的设定 mysql的配置文件中innodb_flush_log_at_trx_commit的默认值是1,修改成0或者2,速 ...

  6. 一些 JS页面的 调用方式init()

    //初始化.... var initAccManPage=function() { //初始化... var initChangeBtn = function(){ $("#btnChang ...

  7. Python3x 爬取妹子图

    思路:1.get_totalpages(url)  通过[性.感.美.女.图]获得该版块的总页数 [首页1234567891011下一页末页共 21页1034条] 2.get_sercoverurl( ...

  8. Android——4.2.2 源代码文件夹结构分析

    近期公司要整android内部培训,分配给我写个培训文档.这里记录例如以下: 撰写不易,转载请注明出处:http://blog.csdn.net/jscese/article/details/4089 ...

  9. windows mysql初始化

    参考文章 https://dev.mysql.com/doc/refman/5.7/en/windows-install-archive.html mysqld --initialize --user ...

  10. sort命令与cat区别

    25.1 由于sort默认是把结果按照行排序后输出到标准输出,所以需要用重定向才能将结果写入文件,形如sort filename > newfile[root@shiyan a]# cat a. ...