Constant-on-time buck-boost regulator converts a positive input to a negative output
Buck regulators find wide application as step-down regulators for converting large positive input voltages into a smaller positive output voltages. Figure 1 shows a simplified buck regulator that operates in continuous-conduction mode—that is, the inductor current always remains positive. The output voltage, VOUT, is equal to D×VIN, where D is the duty-cycle ratio of the buck switch, Q1, and VIN is the input voltage. The duty cycle, D, is equal to TON/TS, where TON is the on-time of Q1 and TS is the switching-frequency period.
You can reconfigure a buck regulator into a buck-boost circuit to convert a positive voltage into a negative voltage (Figure 2). The basic component configurations of both circuits are similar, and the inductor and the rectifier diode are transposed. Because the main switch, Q1, remains in the same location for both configurations, you can use an IC buck regulator for either topology. Switching on Q1 applies input voltage VIN across power inductor L1, and current in the inductor ramps up while Q1remains on. When Q1 switches off, inductor current continues to flow through C1, the load resistance and D1, producing a negative output voltage. During Q1's next on-time interval, the output capacitor supplies current to the load.
Figure 3 shows a low-cost buck-boost converter based on the LM5010 buck-regulator IC that converts a 10 to 50V positive supply voltage into –12V. Although many applications use a fixed switching frequency and modulate the output pulse width, this design features a constant-on-time approach in which the IC's internal output transistor turns on for an interval that's inversely proportional to the difference between the circuit's input and output voltage.
Inside IC1, a regulation comparator monitors the output voltage from voltage divider R1 and R2 and a 2.5V internal reference, and, if the output voltage falls below the desired value, the comparator switches on IC1's output transistor for an interval that an on-timer determines:

Providing that current through L1 remains continuous, VOUT remains regulated. Because R3 and K are constants, switching frequency FS remains constant. This relationship holds true provided that the current through the inductor remains continuous. At lighter loading, the current in the inductor becomes discontinuous—that is, the inductor current drops to zero for a portion of the switching cycle. At the onset of discontinuous operation, the switching frequency begins to drop and thus brings VOUT back into regulation.
Operating a buck-boost regulator in fixed-frequency mode without an oscillator eliminates loop compensation and stabilization components and, as a bonus, offers fast transient response unlimited by feedback-network lag time. With the component values in Figure 3, the regulator operates at approximately 400 kHz, delivering 12V at approximately 0.5A for 10V input and approximately 1A of output current for 50V input. Resistor R4 ensures that the minimum amount of output-ripple voltage necessary for regulation—approximately 25 mV—is available.
Fixed-frequency operation without an oscillator offers a low-cost, easily implemented regulator with no loop-compensation or stability issues to worry about. The transient response is fast, because there are no bandwidth-limiting feedback components. The regulator operates at approximately 400 kHz. The output-current capability varies with the input voltage. When you apply 10V input voltage, the output-current capability is approximately 0.5A, and, at 50V input, the output current is approximately 1A.



Constant-on-time buck-boost regulator converts a positive input to a negative output的更多相关文章
- Tracking Boost Regulator TYPICAL 5V REGULATION WITH BOOST CONVERTER AND LDO
Cs5171: Tracking Boost Regulator Adding a current mirror circuit to a typical boost circuit allows t ...
- Get buck-boost performance from a boost regulator
The SEPIC (single-ended, primary-inductance-converter) topology is generally a good choice for volta ...
- Cascode MOSFET increases boost regulator's input- and output-voltage ranges
Targeting use in portable-system applications that require raising a battery's voltage to a higher l ...
- BUCK BOOST学习总结
首先对于我这种电源方面的小白来说 关于电源用的最多的就是线性稳压了 开关类的如 TI 的TPS系列 我是只知道应用电路而不知道具体原理的 但是长此以往也不是个办法 于是今天就带打家详细的来讲一下 ...
- 笔记本POWER部分的应用——(MOS/LDO/BUCK BOOST)
一.MOSFET 简介: 金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一 ...
- It's a Buck; It's a Boost, No! It's a Switcher!
It's a Buck; It's a Boost, No! It's a Switcher! Sanjaya Maniktala, National Semiconductor Corp., San ...
- Changing the Output Voltage of a Switching Regulator on the Fly
http://www.powerguru.org/changing-the-output-voltage-of-a-switching-regulator-on-the-fly/ There are ...
- High Voltage Boost Supply
http://learn.adafruit.com/ice-tube-clock-kit/design Tubes such as VFDs, Nixies, Decatrons, etc requi ...
- LT1072 -- Wide-range voltage regulator automatically selects operating mode
The circuit in Figure 1 delivers programming voltages to an EEPROM under the control of an external ...
随机推荐
- C++中stringstream样例
包含头文件 #include <sstream> 初始化可以使用 clear(). str( ) 赋值: 这里的clear方法,实际上是清空stringstream的状态(比如出错等),清 ...
- mysql root 密码恢复
1.停止mysql服务 service mysql stop 2.启动mysql时不启动授权表,跳过权限验证使用空密码登陆 mysqld_safe --skip-grant-tables & ...
- mysql 操作时间戳
1.将long显示成时间 SELECT FROM_UNIXTIME(1249488000, '%Y%m%d' ) 2.日期格式化成时间戳 SELECT UNIX_TIMESTAMP('2016-05- ...
- plsql实例精讲部分笔记
转换sql: create or replace view v_sale(year,month1,month2,month3,month4,month5,month6,month7,month8,mo ...
- 可图性判定--Havel-Hakimi定理
两个概念 1.度序列 若把图G所有顶点的度数排成一个序列S,则称S为图G的度序列. 2.序列是可图的 一个非负整数组成的序列如果是某个无向图的度序列,则称该序列是可图的. Havel-Hakimi定理 ...
- cfg 4 ocl
http://blog.sina.com.cn/s/blog_6c868c470102v15y.html rnnlib真难装 http://sourceforge.net/p/rnnl/wiki/Ho ...
- Windows Azure 初体验
最近看到windows azure 在做活动,只需花一块钱就可以体验一个月的windows azure. 于是,我就注册了一个账号也尝试一把云时代,传送门. 注册很简单的,成功后可以看到这个界面. 然 ...
- [前端神器]handlebars+requirejs基本使用方法
最近在某网站看到了handlebars.js,出于好奇就百度了下这是神马玩意,结果让我很是欢喜,于是就开始自学下,handlebars就几个方法,蛮简单,言归正传! 以下是基本教学逻辑演示,会附完整代 ...
- poj2956 Repeatless Numbers(枚举|BFS)
题目链接 http://poj.org/problem?id=2956 题意 如果一个数中的每一位都是不同的,那么这个数叫做无重复数,如11是有重复数,12是无重复数.输入正整数n(1<=n&l ...
- ref:如何在大量jar包中搜索特定字符
ref:https://www.cnblogs.com/jiangxinnju/p/5137760.html?utm_source=tuicool&utm_medium=referral 如何 ...