pearsonr皮尔森共线系数要求:

1.每个变量数据集符合正态分布

2. p值代表极端值出现概率,样本量小时p值不可靠,但样本量大于500时,p值具有很大参考价值。

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html

http://www.360doc.com/content/08/1228/23/50235_2219531.shtml

http://blog.csdn.net/lhkaikai/article/details/37352587

斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)主要用于解决称名数据和顺序数据相关的问题。适用于两列变量,而且具有等级变量性质具有线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推导而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。

公式:

其中:di=xi-yi表示两个排序之间的差值;

n:表示样本的大小,即机器学习算法的数量;

               
解:此题被试5人,不知是否为正态分布,所以用斯皮尔曼等级相关解题。其中,x为听觉反应时间按大小排序,y为视觉反应时间按大小排序。d=x-y。
将n=5,∑d^2=6 带入公式 1-[6·∑(di)^2 / (n^3 - n)]
得:ρ=0.7
答:这5人的视听反应时等级相关系数为0.7,属于高度相关。

优点

适用范围广泛,斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究。

缺点

一组能用积差相关计算的数据,如果改用等级相关,精确度会低于积差相关。凡符合积差相关条件的,最好不要用等级相关计算。

积差相关

积差相关又称积距相关,是当两个变量都是正态连续变量,两者之间呈线性关系时,表示这两个变量之间的相关
使用条件
积差相关的使用条件是:
1、两变量为连续变量,即变量数值取自等距或等比量表。
2、两变量呈线性关系,这可由相关的散布图的形状来描述。
3、两变量为正态分布,或接近正态分布,至少是单峰对称的分布。
4、必须是成对数据,每对数据之间相互独立。
5、要排除共同因素的影响。如果两个变量都随着一个共同因素在变化,即使算出的积差相关系数很高,也难以判断两个变量之间存在高度相关。
6、样本容量大于30,计算出的积差相关系数才有意义。

斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)的更多相关文章

  1. [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman

    There are three popular metrics to measure the correlation between two random variables: Pearson's c ...

  2. spark MLlib 概念 1:相关系数( PPMCC or PCC or Pearson's r皮尔森相关系数) and Spearman's correlation(史匹曼等级相关系数)

    皮尔森相关系数定义: 协方差与标准差乘积的商. Pearson's correlation coefficient when applied to a population is commonly r ...

  3. 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)

    之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...

  4. 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)

    Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...

  5. Pearson product-moment correlation coefficient in java(java的简单相关系数算法)

    一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...

  6. 【ML基础】皮尔森相关系数(Pearson correlation coefficient)

    前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完

  7. linear correlation coefficient|Correlation and Causation|lurking variables

    4.4 Linear Correlation 若由SxxSyySxy定义则为: 所以为了计算方便: 所以,可以明白的是,Sxx和Sx是不一样的! 所以,t r is independent of th ...

  8. PCC值average pearson correlation coefficient计算方法

    1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1   a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...

  9. 一元回归_ols参数解读(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

随机推荐

  1. ES6的新特性(22)——Reflect

    Reflect 概述 Reflect对象与Proxy对象一样,也是 ES6 为了操作对象而提供的新 API.Reflect对象的设计目的有这样几个. (1) 将Object对象的一些明显属于语言内部的 ...

  2. Sorting a Three-Valued Sequence(三值排序)

    Description 排序是一种很频繁的计算任务.现在考虑最多只有三值的排序问题.一个实际的例子是,当我们给某项竞赛的优胜者按金银铜牌序的时候. 在这个任务中可能的值只有三种1,2和3.我们用交换的 ...

  3. 【每日scrum】NO.9

    (1)这是我们冲刺的最后一天,晚上我们的团队进行了收尾工作:第一阶段的任务基本完成,软件主要实现了校园景点照片以及对应的介绍,查询最短路径,查询涉及相关景点的查询,查询全部路径,基本界面的设计,导航功 ...

  4. Rsyslog的模板template详解

    一. Template功能 根据用户需求指定任意格式 动态生成文件名 每个输出都使用了一些模板,包括针对文件的,针对用户消息等 备注: 旧版本:$template 新版本:template() V6之 ...

  5. 解决pciss_spc导入提示表空间不存在以及扩展失败的问题

    select NAME FROM USER$ ORDER BY NAME ; CREATE USER pciss IDENTIFIED BY pciss ; GRANT DBA TO pciss ; ...

  6. css3 flex属性flex-grow、flex-shrink、flex-basis学习笔记

    最近在研究css3的flex.遇到的flex:1;这一块,很是很纠结,flex-grow.flex-shrink.flex-basis始终搞不清,最经搜集了大量的介绍,应该能算是明白了.网上大部分解释 ...

  7. artdialog对话框 三种样式 网址:http://www.planeart.cn/demo/artDialog/_doc/labs.html

    摇头效果 类似与wordpress登录失败后登录框可爱的左右晃动效果 // 2011-07-17 更新 artDialog.fn.shake = function (){ var style = th ...

  8. phaser入手

    做phaser小程序,必须先把环境弄好 发现怎么导入都无济于事. 最后决定亲自操刀,在原代码中,引入全局变量.

  9. 第90天:HTML5中文件API和拖放操作

    一.文件API File API:提供客户端本地操作文件的可能 multiple是让文件域可以多选 <!DOCTYPE html> <html lang="en" ...

  10. BZOJ 1853 幸运数字(容斥原理+dfs)

    题意:求闭区间内能被6和8组成的数字整除的数目.n<=1e11. 我们可以预处理出这些6和8组成的数字,大概2500个,然后排除一些如88,66的情况.这样大概还剩下1000个. 转化为[0,r ...