斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频)
https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share
pearsonr皮尔森共线系数要求:
1.每个变量数据集符合正态分布
2. p值代表极端值出现概率,样本量小时p值不可靠,但样本量大于500时,p值具有很大参考价值。
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.pearsonr.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.spearmanr.html
http://www.360doc.com/content/08/1228/23/50235_2219531.shtml
http://blog.csdn.net/lhkaikai/article/details/37352587
斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)主要用于解决称名数据和顺序数据相关的问题。适用于两列变量,而且具有等级变量性质具有线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推导而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。
公式:
其中:di=xi-yi表示两个排序之间的差值;
n:表示样本的大小,即机器学习算法的数量;
优点
缺点
积差相关
积差相关又称积距相关,是当两个变量都是正态连续变量,两者之间呈线性关系时,表示这两个变量之间的相关
使用条件
积差相关的使用条件是:
1、两变量为连续变量,即变量数值取自等距或等比量表。
2、两变量呈线性关系,这可由相关的散布图的形状来描述。
3、两变量为正态分布,或接近正态分布,至少是单峰对称的分布。
4、必须是成对数据,每对数据之间相互独立。
5、要排除共同因素的影响。如果两个变量都随着一个共同因素在变化,即使算出的积差相关系数很高,也难以判断两个变量之间存在高度相关。
6、样本容量大于30,计算出的积差相关系数才有意义。
斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)的更多相关文章
- [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman
There are three popular metrics to measure the correlation between two random variables: Pearson's c ...
- spark MLlib 概念 1:相关系数( PPMCC or PCC or Pearson's r皮尔森相关系数) and Spearman's correlation(史匹曼等级相关系数)
皮尔森相关系数定义: 协方差与标准差乘积的商. Pearson's correlation coefficient when applied to a population is commonly r ...
- 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)
之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...
- 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)
Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...
- Pearson product-moment correlation coefficient in java(java的简单相关系数算法)
一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...
- 【ML基础】皮尔森相关系数(Pearson correlation coefficient)
前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完
- linear correlation coefficient|Correlation and Causation|lurking variables
4.4 Linear Correlation 若由SxxSyySxy定义则为: 所以为了计算方便: 所以,可以明白的是,Sxx和Sx是不一样的! 所以,t r is independent of th ...
- PCC值average pearson correlation coefficient计算方法
1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1 a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...
- 一元回归_ols参数解读(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
随机推荐
- ES6的新特性(22)——Reflect
Reflect 概述 Reflect对象与Proxy对象一样,也是 ES6 为了操作对象而提供的新 API.Reflect对象的设计目的有这样几个. (1) 将Object对象的一些明显属于语言内部的 ...
- Sorting a Three-Valued Sequence(三值排序)
Description 排序是一种很频繁的计算任务.现在考虑最多只有三值的排序问题.一个实际的例子是,当我们给某项竞赛的优胜者按金银铜牌序的时候. 在这个任务中可能的值只有三种1,2和3.我们用交换的 ...
- 【每日scrum】NO.9
(1)这是我们冲刺的最后一天,晚上我们的团队进行了收尾工作:第一阶段的任务基本完成,软件主要实现了校园景点照片以及对应的介绍,查询最短路径,查询涉及相关景点的查询,查询全部路径,基本界面的设计,导航功 ...
- Rsyslog的模板template详解
一. Template功能 根据用户需求指定任意格式 动态生成文件名 每个输出都使用了一些模板,包括针对文件的,针对用户消息等 备注: 旧版本:$template 新版本:template() V6之 ...
- 解决pciss_spc导入提示表空间不存在以及扩展失败的问题
select NAME FROM USER$ ORDER BY NAME ; CREATE USER pciss IDENTIFIED BY pciss ; GRANT DBA TO pciss ; ...
- css3 flex属性flex-grow、flex-shrink、flex-basis学习笔记
最近在研究css3的flex.遇到的flex:1;这一块,很是很纠结,flex-grow.flex-shrink.flex-basis始终搞不清,最经搜集了大量的介绍,应该能算是明白了.网上大部分解释 ...
- artdialog对话框 三种样式 网址:http://www.planeart.cn/demo/artDialog/_doc/labs.html
摇头效果 类似与wordpress登录失败后登录框可爱的左右晃动效果 // 2011-07-17 更新 artDialog.fn.shake = function (){ var style = th ...
- phaser入手
做phaser小程序,必须先把环境弄好 发现怎么导入都无济于事. 最后决定亲自操刀,在原代码中,引入全局变量.
- 第90天:HTML5中文件API和拖放操作
一.文件API File API:提供客户端本地操作文件的可能 multiple是让文件域可以多选 <!DOCTYPE html> <html lang="en" ...
- BZOJ 1853 幸运数字(容斥原理+dfs)
题意:求闭区间内能被6和8组成的数字整除的数目.n<=1e11. 我们可以预处理出这些6和8组成的数字,大概2500个,然后排除一些如88,66的情况.这样大概还剩下1000个. 转化为[0,r ...