题解【bzoj2440 [中山市选2011]完全平方数】
Description
求第 \(k\) 个不含平方因子的正整数。多组询问。\(k \leq 10^9, T \leq 50\)
Solution
网上的题解几乎都是容斥,这里给一个简单的也挺快的做法。
首先二分答案,然后问题转化成前 \(n\) 个数中有几个不含平方因子的数。
[\(n\) 不含平方因子] \(=\mu^2(n)\)
所以要求的就是 \(\sum\limits_{i=1}^{n}\mu^{2}(i)=\sum\limits_{i=1}^{n}\sum\limits_{d^2|i}\mu(d)=\sum\limits_{d=1}^{\sqrt n}\mu(d)\lfloor\frac{n}{d^2}\rfloor\)
直接筛出 \(\sqrt n\) 以内的所有 \(\mu\) 然后直接 \(\sqrt n\) 算就可以了
非常简单好写,没有啥细节...
复杂度 \(O(T (\sqrt n) (\log n))\) 所以数据范围可以到 1e12 的2333
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll INF = 2 * 1e9;
const int N = 100000;
int T; ll k;
int p[N + 50], flag[N + 50], cnt, mu[N + 50];
inline void prework() {
mu[1] = 1; flag[1] = 1;
for(int i = 2; i <= N; i++) {
if(!flag[i]) {
mu[i] = -1; p[++cnt] = i;
} for(int j = 1; j <= cnt && i * p[j] <= N; j++) {
flag[i * p[j]] = 1;
if(i % p[j] == 0) {
mu[i * p[j]] = 0; break ;
} mu[i * p[j]] = mu[i] * -1;
}
}
}
inline bool check(ll n) {
ll ret = 0;
for(ll d = 1; d * d <= n; d++)
ret += (n / (d * d)) * mu[d];
return ret >= k;
}
int main() {
scanf("%d", &T); prework();
while(T--) {
scanf("%lld", &k);
ll l = 0, r = k * 2, ans;
while(l <= r) {
ll mid = (l + r) / 2;
if(check(mid)) r = mid - 1, ans = mid;
else l = mid + 1;
} printf("%lld\n", ans);
}
return 0;
}
题解【bzoj2440 [中山市选2011]完全平方数】的更多相关文章
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- 【学术篇】bzoj2440 [中山市选2011]完全平方数
-题目の传送门- 题目大意: 找到第k个无平方因子数. 看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法. 考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个 ...
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
随机推荐
- ES6的新特性(20)—— Module 的加载实现
Module 的加载实现 上一章介绍了模块的语法,本章介绍如何在浏览器和 Node 之中加载 ES6 模块,以及实际开发中经常遇到的一些问题(比如循环加载). 浏览器加载 传统方法 HTML 网页中, ...
- loadrunner socket协议问题归纳(1)
前段时间测了loadrunner直接发送报文到socket上的性能测试.在此,稍微回顾整理下. 与socket通讯,有两种方式,一种是建立长连接,建立后,不停的发送,接收.另外一种是建立短连接,建立连 ...
- Right-BICEP 测试四则运算程序
测试方法: Right-BICEP 测试计划: 1.边界测试是否正确 2.负数表示是否实现 3.是否有乘除法 4.是否可以选择题目数量 5.是否有输出方式 6.是否有括号 7.是否有重复查询 ...
- 简述Java中Http/Https请求监听方法
一.工欲善其事必先利其器 做Web开发的人总免不了与Http/Https请求打交道,很多时候我们都希望能够直观的的看到我们发送的请求参数和服务器返回的响应信息,这个时候就需要借助于某些工具啦.本文将采 ...
- 【beta】Scrum站立会议第7次....11.9
小组名称:nice! 组长:李权 成员:于淼 刘芳芳韩媛媛 宫丽君 项目内容:约跑app(约吧) 时间:2016.11.9 12:00——12:30 地点:传媒西楼220室 本次对beta阶段 ...
- UEditor前端配置项说明
UEditor 的配置项分为两类:前端配置项 和 后端配置项 后端配置项具体看这个文档L:后端配置项说明 本文档介绍如何通过设置前端配置项,定制编辑器的特性,配置方法主要通过修改ueditor.con ...
- 第120天:移动端-Bootstrap基本使用方法
一.Bootstrap使用 1.搭建Bootstrap页面骨架及项目目录结构 ``` ├─ /weijinsuo/ ··················· 项目所在目录 └─┬─ /css/ ···· ...
- DataTable Excel 导出:
public static class CSVFileHelper { public static string ToHtmlTable(this DataTable target) { return ...
- Spring Cloud Sleuth服务跟踪
监控 使用zipkin(https://zipkin.io/) 监控服务构建: (普通的springBoot项目) <!--引入的zipkinServer依赖--> <depende ...
- 最小生成树-Borůvka算法
一般求最小生成树的时候,最流行的是Kruskal算法,一种基于拟阵证明的贪心,通过给边排序再扫描一次边集,利用并查集优化得到,复杂度为\(O(ElogE)\).另一种用得比较少的是Prim算法,利用优 ...