Input

第一行是用空格隔开的二个正整数,分别给出了舞台的宽度W(1到108之间)和馅饼的个数n(1到105)。  接下来n行,每一行给出了一块馅饼的信息。由三个正整数组成,分别表示了每个馅饼落到舞台上的时刻t[i](1到10^8秒),掉到舞台上的格子的编号p[i](1和w之间),以及分值v[i](1到1000之间)。游戏开始时刻为0。输入文件中同一行相邻两项之间用一个空格隔开。输入数据中可能存在两个馅饼的t[i]和p[i]都一样。

Output

一个数,表示游戏者获得的最大总得分。

Sample Input

3 4

1 2 3

5 2 3

6 3 4

1 1 5

Sample Output

12

【数据规模】

对于100%的数据,1<=w,t[i]<=10^8,1<=n<=100000。


思路

\(dp_i\)表示恰好接住i的最大价值

首先你发现可以转移的条件是\(abs(p_i-p_j)\leq 2*(t_i-t_j)\)

展开绝对值变成了

\(2t_j-p_j\leq 2t_i-p_i\)

\(2t_j+p_j\leq 2t_i+p_i\)

然后就变成了二维平面中的前缀矩形最大值统计

可以按照一个维度排序,另一个维度线段树就可以了


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e5 + 10;
struct Node {
int x, y, t, p, vl;
} p[N];
int w, n, pre[N], tot, dp[N];
bool cmp(Node a, Node b) {
return a.x < b.x;
}
#define LD (t << 1)
#define RD (t << 1 | 1)
int maxv[N << 2];
void pushup(int t) {
maxv[t] = max(maxv[LD], maxv[RD]);
}
void insert(int t, int l, int r, int pos, int vl) {
if (l == r) {
maxv[t] = vl;
return;
}
int mid = (l + r) >> 1;
if (pos <= mid) insert(LD, l, mid, pos, vl);
else insert(RD, mid + 1, r, pos, vl);
pushup(t);
}
int query(int t, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return maxv[t];
int mid = (l + r) >> 1;
if (qr <= mid) return query(LD, l, mid, ql, qr);
else if(ql > mid) return query(RD, mid + 1, r, ql, qr);
else return max(query(LD, l, mid, ql, mid), query(RD, mid + 1, r, mid + 1, qr));
}
int main() {
Read(w), Read(n);
fu(i, 1, n) {
Read(p[i].t), Read(p[i].p), Read(p[i].vl);
p[i].x = 2 * p[i].t - p[i].p;
p[i].y = 2 * p[i].t + p[i].p;
pre[i] = p[i].y;
}
sort(p + 1, p + n + 1, cmp);
sort(pre + 1, pre + n + 1);
tot = unique(pre + 1, pre + n + 1) - pre - 1;
int ans = 0;
fu(i, 1, n) {
p[i].y = lower_bound(pre + 1, pre + tot + 1, p[i].y) - pre;
dp[i] = query(1, 1, n, 1, p[i].y) + p[i].vl;
insert(1, 1, n, p[i].y, dp[i]);
ans = max(ans, dp[i]);
}
Write(ans);
return 0;
}

BZOJ2131 免费的馅饼【线段树优化DP】的更多相关文章

  1. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  2. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  3. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  4. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  5. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  6. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  7. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  8. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

  9. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  10. 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

    2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...

随机推荐

  1. 01_zookeeper简介(刷新)

    1. 分布式系统及其问题 zookeeper是帮助我们构建分布式系统的一个软件(协调员的角色)首先,我们要明白分布式系统以及它的问题,之后才能理解为什么有zookeeper 1.1 分布式系统 分布式 ...

  2. C# WebSocket解析(收发数据包、分片超长包处理)

    using System; using System.Collections.Generic; using System.Linq; using System.Security.Cryptograph ...

  3. 解决msi文件在XP上安装未完成

    下载Ocra工具,然后删除"DIRCA_CheckFx"和"VSDCA_VsdLaunchConditions"这两个Action即可.第一步,下载并打开Ocr ...

  4. Java之聊天室系统设计一

    任务: 先上实现效果图: 登陆界面: index.jsp: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN& ...

  5. 《Think in Java》(十一)持有对象

    Java 中的持有对象就是容器啦,看完这一章粗略的了解了 Java 中的容器框架以及常用实现!但是容器框架中的接口以及实现类有好多,下午还得好好看看第 17 章--容器深入研究以及 Java 官方的文 ...

  6. Spring Cloud实战

    Spring Cloud实战(一)-Spring Cloud Config Server https://segmentfault.com/a/1190000006149891 https://seg ...

  7. 搞懂分布式技术4:ZAB协议概述与选主流程详解

    搞懂分布式技术4:ZAB协议概述与选主流程详解 ZAB协议 ZAB(Zookeeper Atomic Broadcast)协议是专门为zookeeper实现分布式协调功能而设计.zookeeper主要 ...

  8. (转载)设置环境变量永久生效和临时生效 export PS1

    source/etc/profile是让/etc/profile文件修改后立即生效, 还有一种方法是:. /etc/profile 注意:.和/etc/profile有空格 linux中source命 ...

  9. 登录后保存token值到cookie中

    1.引入相应JS <script src="web/js/jquery-1.9.1.min.js"></script> <script src=&qu ...

  10. C++实现设计模式之-装饰模式

    饰模式:动态地给一个对象添加一些额外的职责.就增加功能来说,装饰模式相比生成子类更为灵活.有时我们希望给某个对象而不是整个类添加一些功能.比如有一个手机,允许你为手机添加特性,比如增加挂件.屏幕贴膜等 ...