题目大意:一个$n$个点的树,树上有$m$个点对$(a,b)$,找到一个点$x$,使得$max(dis(x,a_i)+dis(x,b_i))$最小

如果做过幻想乡的战略游戏这道题,应该这道题的思路一眼能看出来

首先如果从一个点向能使答案变小的子树上走,那么从子树上一定不会再回到这个点

所以考虑一个暴力,即每次计算所有子树的答案,然后向最优的方向走

这显然是正确的,但是不够优秀

我们再深入分析一下这道题,可以发现,当且仅当所有的距离等于最大值的点对都在它的一个子树内时才可能使得答案变优

很好理解,因为如果不在通一个子树内,不论向任何地方走,总会有点对的最大值变得更大

然后这样我们就可以用点分治的$getroot$来优化这个过程,复杂度为$nlogn$

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define M 100010
using namespace std;
int n,m,num,rt,S,ans=1e9;
int head[M],size[M],maxn[M],bel[M],dis[M],u[M],v[M],st[M];
bool vis[M];
struct point{int to,next,dis;}e[M<<];
void add(int from,int to,int dis)
{
e[++num].next=head[from];
e[num].to=to;
e[num].dis=dis;
head[from]=num;
}
void getroot(int x,int fa)
{
size[x]=maxn[x]=;
for(int i=head[x];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa||vis[to]) continue;
getroot(to,x),size[x]+=size[to];
maxn[x]=max(maxn[x],size[to]);
}
maxn[x]=max(maxn[x],S-size[x]);
if(maxn[x]<maxn[rt]) rt=x;
} void dfs(int x,int fa,int id)
{
bel[x]=id;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
dis[e[i].to]=dis[x]+e[i].dis;
dfs(e[i].to,x,id);
}
} void solve(int x)
{
if(vis[x]) {printf("%d\n",ans);exit();}
vis[x]=true,dis[x]=;
for(int i=head[x];i;i=e[i].next)
{
dis[e[i].to]=e[i].dis;
dfs(e[i].to,x,e[i].to);
}
int MX=,top=,pos=;
for(int i=;i<=m;i++)
{
if(dis[u[i]]+dis[v[i]]>MX)
{
MX=dis[u[i]]+dis[v[i]];
st[top=]=i;
}
else if(dis[u[i]]+dis[v[i]]==MX)
st[++top]=i;
}
ans=min(ans,MX);
for(int i=;i<=top;i++)
{
if(bel[u[st[i]]]!=bel[v[st[i]]])
{
printf("%d\n",ans);
exit();
}
else
{
if(!pos) pos=bel[u[st[i]]];
else if(pos!=bel[u[st[i]]])
{
printf("%d\n",ans);
exit();
}
}
}
S=size[pos],rt=;
getroot(pos,),solve(rt);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
int a,b,c;scanf("%d%d%d",&a,&b,&c);
add(a,b,c),add(b,a,c);
}
for(int i=;i<=m;i++) scanf("%d%d",&u[i],&v[i]);
S=maxn[]=n,getroot(,),solve(rt);
return ;
}

[洛谷P4886]快递员的更多相关文章

  1. 【洛谷 P4886】 快递员 (点分治)

    这题因为一些小细节还是\(debug\)了很久...不过我第一次用脚本对拍,不亏. 先随便找一个点作为根,算出答案,即所有点对到这个点的距离和的最大值,并记录所有距离最大的点对.如果这个点在任意一个距 ...

  2. 【LGR-051】洛谷9月月赛

    [LGR-051]洛谷9月月赛 luogu 签到题 description 给出\(K\)和质数\(m\),求最小的\(N\)使得\(111....1\)(\(N\)个\(1\))\(\equiv k ...

  3. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  4. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  7. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

  8. 洛谷P1371 NOI元丹

    P1371 NOI元丹 71通过 394提交 题目提供者洛谷OnlineJudge 标签云端评测 难度普及/提高- 提交  讨论  题解 最新讨论 我觉得不需要讨论O long long 不够 没有取 ...

  9. 洛谷P1538迎春舞会之数字舞蹈

    题目背景 HNSDFZ的同学们为了庆祝春节,准备排练一场舞会. 题目描述 在越来越讲究合作的时代,人们注意的更多的不是个人物的舞姿,而是集体的排列. 为了配合每年的倒计时,同学们决定排出——“数字舞蹈 ...

随机推荐

  1. UIScreen(屏幕)、UIWindow(画框)、UIView(画布)、didFinishLaunchingWithOptions的概念

    //didFinishLaunchingWithOptions 方法:顾名思义.在app开始运行时会调用里面的方法.- (BOOL)application:(UIApplication *)appli ...

  2. 属性attribute和property的区别

    <!DOCTYPE html> <html> <head> <meta http-equiv="content-type" content ...

  3. html中a标签的target属性

    _blank -- 在新窗口中打开链接 _parent -- 在父窗体中打开链接 _self -- 在当前窗体打开链接,此为默认值 _top -- 在当前窗体打开链接,并替换当前的整个窗体(框架页) ...

  4. GROUP BY 和 ORDER BY一起使用

    转:http://lzfhope.blog.163.com/blog/static/636399220092554045196/ 环境:oracle 10g单单group by 或者order by本 ...

  5. Node.js 入门资料

    小毛驴的阿凡提的 Node.js 入门笔记 http://www.cnblogs.com/Afanty/category/1007304.html

  6. 浅析Spring AOP

    在正常的业务流程中,往往存在着一些业务逻辑,例如安全审计.日志管理,它们存在于每一个业务中,然而却和实际的业务逻辑没有太强的关联关系. 图1 这些逻辑我们称为横切逻辑.如果把横切的逻辑代码写在业务代码 ...

  7. Linux下多个.c文件的编译和Makefile文件

    在编程的时候,我们可以把一个完整程序的每个函数分离出来,写成.c文件,最后再一起编译和链接.这样有利于程序功能模块化,也方便检查代码错误. .h文件:里面编辑该程序需要引用的头文件. #ifndef  ...

  8. docker——三大核心概念

    镜像.容器.仓库是docker的三大核心概念. docker镜像类似于虚拟机镜像,你可以将其理解为一个只读模板. docker容器类似于一个轻量级的沙箱,Docker利用容器来运行和隔离应用.容器是从 ...

  9. python 时间和时间戳的转换

    对于时间数据,如2016-05-05 20:28:54,有时需要与时间戳进行相互的运算,此时就需要对两种形式进行转换,在Python中,转换时需要用到time模块,具体的操作有如下的几种: 将时间转换 ...

  10. Problem A. Array Factory XVII Open Cup named after E.V. Pankratiev Stage 4: Grand Prix of SPb, Sunday, Octorber 9, 2016

    思路: 直接二分长度不可行,因为有负数. 考虑枚举坐便删l个数,那如果可以在短时间内求出符合条件的右边最小删的数的个数,这题便可做了. 即:当左边删l个数时,要使sum[n]-sum[l]-fsum[ ...