题目大意:
  告诉你一个数n,求满足φ^x(n)=1的x。

思路:
  首先我们可以发现满足φ(n)=1的数只有2,也就是说你得到最终的结果,最后一步肯定是φ(2)。
  同时,可以发现φ(φ(2^k))=φ(2^(k-1)),因为1~2^k中间有且仅有奇数与2^k互质,个数是2^(k-1)个。
  φ是个积性函数,也就是说φ(n)=φ(p1^q1)*φ(p2^q2)*...*φ(pm^qm)。
  对于只有一种质因数的n, φ(n)=φ(p^q)=p^q*(1-1/p)=(p-1)*(p^q-1)。
  因此我们可以发现,每次φ下去的时候都会往里面加若干个质因数2,而对于偶数,每次会消掉一个质因数2。
  由于我们最后得到答案都要经过φ(2),原问题转化为可以消掉多少个2,也就是总共会产生多少个2。
  预处理出每个质因数最后能分解出多少个2,累加起来就是总共要消灭的2的个数。
  预处理的时候可以用类似于线性筛的方法做。
  注意如果一开始就没有质因数2,那就要多花一步来得到一个2。

 #include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int P=,N=;
int f[P],prime[N],cnt;
inline void pret() {
f[]=;
for(register int i=;i<P;i++) {
if(!f[i]) {
prime[cnt++]=i;
f[i]=f[i-];
}
for(register int j=;j<cnt;j++) {
if(i*prime[j]>=P) break;
f[i*prime[j]]=f[i]+f[prime[j]];
if(!(i%prime[j])) break;
}
}
}
int main() {
pret();
for(register int T=getint();T;T--) {
int64 ans=;
for(register int m=getint();m;m--) {
const int p=getint(),q=getint();
ans+=(int64)f[p]*q;
if(p==) ans--;
}
printf("%lld\n",ans);
}
return ;
}

[HAOI2012]外星人的更多相关文章

  1. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  2. BZOJ2749: [HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 377  Solved: 199[Submit][Status] ...

  3. 【BZOJ 2749】 2749: [HAOI2012]外星人 (数论-线性筛?类积性函数)

    2749: [HAOI2012]外星人 Description Input Output 输出test行,每行一个整数,表示答案. Sample Input 1 2 2 2 3 1 Sample Ou ...

  4. 【bzoj2749】[HAOI2012]外星人

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 677  Solved: 360[Submit][Status][ ...

  5. BZOJ2749 HAOI2012外星人(数论)

    不妨把求φ抽象成把将每个位置上的一个小球左移一格并分裂的过程,那么即求所有球都被移到1号格子的步数. 显然要达到1必须先到达2.可以发现每次分裂一定会分裂出2号位的球,因为2以外的质数一定是奇数.以及 ...

  6. JZYZOJ1524 [haoi2012]外星人 欧拉函数

    http://172.20.6.3/Problem_Show.asp?id=1524 大概可以算一个结论吧,欧拉函数在迭代的时候,每次迭代之后消去一个2,每个非2的质因子迭代一次又(相当于)生成一个2 ...

  7. 题解 P2350 【[HAOI2012]外星人】

    题目链接 还是本宝宝写题解的一贯习惯 $ :$ 先吐槽吐槽这道题$……$ 相信不少同学第一眼一定没有看懂题.(因为我也没看懂) ~~初中~~数学知识: 对于函数 $ f(x)$ 有 $f^{-1}(x ...

  8. 2749: [HAOI2012]外星人

    首先像我一样把柿子画出来或者看下hint 你就会发现其实是多了个p-1这样的东东 然后除非是2他们都是偶数,而2就直接到0了 算一下2出现的次数就好 #include<cstdio> #i ...

  9. BZOJ 2749 [HAOI2012]外星人

    题解:对每一个>2的质数分解,最后统计2的个数 注意:如果一开始没有2则ans需+1,因为第一次求phi的时候并没有消耗2 WA了好几遍 #include<iostream> #in ...

随机推荐

  1. webpack编译报错:Module not found: Error: Cannot resolve 'file' or 'directory' ./../../node_modules..

    在同事的mac电脑上,可以正常编译,拿到我这边就出错了(⊙﹏⊙) 好像是webpack在window下的一个bug,需要让 webpack 和你的项目保持在一个盘符下,参考. 解决方法: 修改conf ...

  2. 深入理解Spring系列之十二:@Transactional是如何工作的

    转载 https://mp.weixin.qq.com/s/ZwhkUQF1Nun9pNrFI-3a6w 首先从说起.配置了,就必定有对应的标签解析器类,查看NamespaceHandler接口的实现 ...

  3. Python编程规范精简版

    用四个空格缩进,不要用tab键:四个空格是在较小缩进(可以允许更大的嵌套深度)和较大缩进(可读性更好)之间的一个很好的折中.制表符会带来混乱,最好不要使用: 包装行保证每行不超过79个字符:这对那些使 ...

  4. mini_httpd在RedHat 5下安装

    1.安装mini_httpdcd /usr/src/redhat/SOURCES wget http://www.acme.com/software/mini_httpd/mini_httpd-1.1 ...

  5. POJ 3253 Fence Repair(哈夫曼编码)

    题目链接:http://poj.org/problem?id=3253 题目大意: 有一个农夫要把一个木板钜成几块给定长度的小木板,每次锯都要收取一定费用,这个费用就是当前锯的这个木版的长度 给定各个 ...

  6. python正则表达式教程

    原文这里,非常实用,转载一下 再来一篇,两篇一起看,美滋滋 本文介绍了Python对于正则表达式的支持,包括正则表达式基础以及Python正则表达式标准库的完整介绍及使用示例.本文的内容不包括如何编写 ...

  7. LoadRunner去除事物中的程序的执行时间

    大家在性能测试过程中,经常会用到程序处理或组织数据,以达到一定的测试目的,但是程序本身执行会消耗一些时间,这部分消耗的时间是包含在响应时间里面,此时,响应时间=正常响应时间+程序执行消耗时间.那么如何 ...

  8. poj3414 Pots(BFS)

    题目链接 http://poj.org/problem?id=3414 题意 有两个杯子,容量分别为A升,B升,可以向杯子里倒满水,将杯子里的水倒空,将一个杯子里的水倒到另一个杯子里,求怎样倒才能使其 ...

  9. 什么是泛型 转载自http://www.blogjava.net/Jack2007/archive/2008/05/05/198566.html

    我们在编写程序时,经常遇到两个模块的功能非常相似,只是一个是处理int数据,另一个是处理string数据,或者其他自定义的数据类型,但我们没有办法,只能分别写多个方法处理每个数据类型,因为方法的参数类 ...

  10. .NET 社区汇总

    英文社区: 名称:MSDN 地址:http://msdn.microsoft.com/zh-cn/default.aspx 描述:这个网站是大家学.Net的初始网站,也是.net方面官方和权威的资料, ...