一:背景

给定一个字符串,求出其最长回文子串。例如:

    1. s="abcd",最长回文长度为 1;
    2. s="ababa",最长回文长度为 5;
    3. s="abccb",最长回文长度为 4,即bccb。

以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为O(n^2),效率很差。

1975年,一个叫Manacher的人发明了一个算法,Manacher算法(中文名:马拉车算法),该算法可以把时间复杂度提升到O(n)。下面来看看马拉车算法是如何工作的。

二:算法过程分析

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。

举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s_new[i] $ # a # b # b # a # h # o # p # x # p #
p[i]   1 2 1 2 5 2 1 2 1 2 1 2 1 2 1 4 1 2 1

可以看出,p[i] - 1正好是原字符串中最长回文串的长度。

接下来的重点就是求解 p 数组,如下图:

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]

假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:

if (i < mx)
p[i] = min(p[ * id - i], mx - i);

2 * id - i为 i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。

三:代码

//指定位置判断回文,此题为指定包含最后一个的最长回文序列。
char ma[maxn*], s[maxn];
int mp[maxn*];
int ans,Mlen;
void Manacher(char s[],int len)
{
int l=;
ma[l++]='$';
ma[l++]='#';
for(int i=; i<len; i++)
{
ma[l++]=s[i];
ma[l++]='#';
}
ma[l]=;
int mx=,id=;
for(int i=; i<l; i++)
{
mp[i]=mx>i?min(mp[*id-i],mx-i):;
while(ma[i+mp[i]]==ma[i-mp[i]])
mp[i]++;
if(i+mp[i]>mx)
{
mx=i+mp[i];
id=i;
}
// 这里可以check(ma[i])
ans=max(ans,mp[i]-);
if(mp[i]-+i==l-)
Mlen=max(Mlen,mp[i]-);
}
} int main()
{
int T;
cin>>T;
int kcase = ;
while(T--)
{
memset(ma,,sizeof(ma));
memset(mp,,sizeof(mp));
cin>>s;
int len=strlen(s);
ans=;
Mlen=;
Manacher(s,len);
if(ans == len)
printf("Case %d: %d\n", kcase++, ans);
else
printf("Case %d: %d\n", kcase++, len - Mlen + len);
}
}

四:题目

这个题目就是在原来的基础上添加了一个判断条件,看清楚在哪里添加。

//101350I - 2017 ACM Arabella Collegiate Programming Contest - Mirrored String II
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=;
char ma[maxn*];
int mp[maxn*];
char s[maxn];
int check(char zzz)
{
if(zzz=='A'||zzz=='H'||zzz=='I'||zzz=='M'||zzz=='O'||zzz=='#'||
zzz=='T'||zzz=='U'||zzz=='V'||zzz=='W'||zzz=='X'||zzz=='Y')
return ;
return ;
} void Manacher(char s[],int len)
{
int l=;
ma[l++]='$';
ma[l++]='#';
for(int i=; i<len; i++)
{
ma[l++]=s[i];
ma[l++]='#';
}
ma[l]=;
int mx=,id=;
for(int i=; i<l; i++)
{
mp[i]=mx>i?min(mp[*id-i],mx-i):;
while(check(ma[i+mp[i]])&&ma[i+mp[i]]==ma[i-mp[i]])//在这里添加check
{
mp[i]++;
}
if(i+mp[i]>mx)
{
mx=i+mp[i];
id=i;
}
}
} int main()
{
int T;
cin>>T;
while(T--)
{
cin>>s;
int len=strlen(s);
Manacher(s,len);
int ans=;
for(int i=; i<len*+; i++)
if(check(ma[i]))//这里添加check
ans=max(ans,mp[i]-);
cout<<ans<<endl;
}
}

manacher算法求最长回文子序列的更多相关文章

  1. Manacher算法 - 求最长回文串的利器

    求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...

  2. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  3. manacher算法求最长回文子串

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

  4. Manacher算法 求 最长回文子串

    1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...

  5. hdu 3068 最长回文 (Manacher算法求最长回文串)

    参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...

  6. leetcode 5 Longest Palindromic Substring(Manacher算法求最长回文串)

    应用一下manacher算法就可以O(n)求出结果了.可以参考hdu3068 substr(start,length)函数是这样用的: substr 方法 返回一个从指定位置开始,并具有指定长度的子字 ...

  7. Manacher算法求最长回文串模板

    #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> ...

  8. NOIP2016提高组初赛(2)四、读程序写结果3、求最长回文子序列

    #include <iostream> using namespace std; int lps(string seq, int i, int j) { int len1, len2; i ...

  9. manacher 算法(最长回文串)

    manacher算法: 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i ...

随机推荐

  1. Spring boot初始

    1 创建pom.xml parent:org.springframework.boot  包含启动的依赖 添加依赖,如 spring-boot-starter-web mvn dependency:t ...

  2. 【CF343D】 Water Tree(树链剖分)

    题目链接 树剖傻逼题,练练手好久没写树剖了. 查询忘记\(pushdown\)抓了好久虫.. 全文手写,一遍过... #include <cstdio> const int MAXN = ...

  3. ActiveMQ笔记之安装(Linux)

    1. 基本概念 MQ(MessageQueue),消息队列,是一个消息接收和转发的容器. Apache ActiveMQ是一个JMS Provider实现. 2. 安装 从官网下载安装包: wget ...

  4. bzoj 3123 可持久化线段树启发式合并

    首先没有连边的操作的时候,我们可以用可持久化线段树来维护这棵树的信息,建立权值可持久化线段树,那么每个点继承父节点的线段树,当询问为x,y的时候我们可以询问rot[x]+rot[y]-rot[lca( ...

  5. Redis—初探Redis

    一.什么是Redis? 学习Redis最好的是看官网了,下面是Redis的官网对Redis的介绍 可见,Redis是一个内存存储的数据结构服务器,可以用作数据库.缓存等.支持的数据结构也很丰富,有字符 ...

  6. Java线上应用故障之CPU占用高排查与定位

    最近线上频繁报警CPU空闲不足,故紧急排查后分享给大家 1.使用top命令,获取占用CPU最高的进程号 2.查看线程号对应的进程信息 命令:ps -ef|grep 22630 3.查看进程对应的线程信 ...

  7. MySQL-索引工作原理及使用注意事项

    1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...

  8. web项目更改文件后缀,隐藏编程语言

    从Java EE5.0开始,<servlet-mapping>标签就可以配置多个<url-pattern>.例如可以同时将urlServlet配置一下多个映射方式: <s ...

  9. mysql root 密码恢复

    1.停止mysql服务 service mysql stop 2.启动mysql时不启动授权表,跳过权限验证使用空密码登陆 mysqld_safe --skip-grant-tables & ...

  10. 一个带重试次数的curl 函数

    <?php/** * [curl 带重试次数] * @param [type] $url [访问的url] * @param [type] $post [$POST参数] * @param in ...