前面一篇教程中,我们实现了Zhang的快速并行细化算法,从算法原理上,我们可以知道,算法是基于像素8邻域的形状来决定是否删除当前像素。还有很多与此算法相似的细化算法,只是判断的条件不一样。在综述文章, Thinning Methodologies-A Comprehensive Survey中描述了各种细化算法的实现原理,有兴趣可以阅读一下。

      下面看看图像细化的定义以及细化算法的分类:

图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。
     所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点(通常是轮廓上的点),但仍要保持原来的形状,直到得到图像的骨架。

     骨架,可以理解为图象的中轴,如下面的字母H,白色的线即为起中轴,该中轴也可以称作H的骨架。


好的细化算法一定要满足下面几个条件:

  • 收敛性;保证细化后细线的连通性;保持原图的基本形状;减少笔画相交处的畸变;细化结果是原图像的中心线;
    细化的快速性和迭代次数少。

依据是否使用迭代运算可以分为两类:
非迭代算法:一次即产生骨架,如基于距离变换的方法,游程编码细化等。
迭代算法:即重复删除图像边缘满足一定条件的像素,最终得到单像素宽带骨架。

迭代方法依据其检查像素的方法又可以再分成两类:
串行算法:是否删除像素在每次迭代的执行中是固定顺序的,它不仅取决于前次迭代的结果,也取决于本次迭代中已处理过像素点分布情况。
并行算法:像素点删除与否与像素值图像中的顺序无关,仅取决于前次迭代的结果。

 

常用的迭代算法包括:Hilditch、Pavlidis、Rosenfeld细化算法以及基于索引表查询的细化算法等等。

 

Hilditch算法使用于二值图像,该算法是并行串行结合的算法。
Pavlidis算法通过并行和串行混合处理来实现,用位运算进行特定模式的匹配,所得的骨架是8连接的,用于0-1二值图像。
Rosenfeld算法是一种并行细化算法,所得的骨架形态是8-连接的,使用于0-1二值图像。

索引表细化算法:经过预处理后得到待细化的图像是0、1二值图像。像素值为1的是需要细化的部分,像素值为0的是背景区域。基于索引表的算法就是依据一定的判断依据,所做出的一张表,然后根据要细化的点的八个邻域的情况查询,若表中元素是1,若表中元素是1,则删除该点(改为背景),若是0则保留。因为一个像素的8个邻域共有256中可能情况,因此,索引表的大小一般为256,索引表细化算法速度很快。

 

OpenCV学习(14) 细化算法(2)的更多相关文章

  1. OpenCV学习(16) 细化算法(4)

    本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://w ...

  2. OpenCV学习(18) 细化算法(6)

    本章我们在学习一下基于索引表的细化算法. 假设要处理的图像为二值图,前景值为1,背景值为0. 索引表细化算法使用下面的8邻域表示法: 一个像素的8邻域,我们可以用8位二进制表示,比如下面的8邻域,表示 ...

  3. OpenCV学习(15) 细化算法(3)

          本章我们学习一下Hilditch算法的基本原理,从网上找资料的时候,竟然发现两个有很大差别的算法描述,而且都叫Hilditch算法.不知道那一个才是正宗的,两个算法实现的效果接近,第一种算 ...

  4. OpenCV学习(17) 细化算法(5)

    本章我们看下Pavlidis细化算法,参考资料http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/con ...

  5. OpenCV学习(13) 细化算法(1)

    程序编码参考经典的细化或者骨架算法文章: T. Y. Zhang and C. Y. Suen, "A fast parallel algorithm for thinning digita ...

  6. OpenCV学习(19) 细化算法(7)

    最后再来看一种通过形态学腐蚀和开操作得到骨架的方法.http://felix.abecassis.me/2011/09/opencv-morphological-skeleton/ 代码非常简单: v ...

  7. c++opencv中线条细化算法

    要达到的效果就是将线条尽量细化成单像素,按照论文上的Hilditch算法试了一下,发现效果不好,于是自己尝试着写了一下细化的算法,基本原理就是从上下左右四个方向向内收缩. 1.先是根据图片中的原则确定 ...

  8. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  9. OpenCV学习(21) Grabcut算法详解

    grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...

随机推荐

  1. css3代码整理—弹性盒子篇

    父级使用弹性盒子: #fu{ display:flex; } 父级中子级的对齐方式: 1.水平对齐方式:两端对齐 #fu { display:flex; justify-content:space-b ...

  2. PouchDB:JavaScript同步数据库

    简介 PouchDB是受 Apache CouchDB启发为Web设计的一款占用空间少的数据库.PouchDB项目的目标是帮助开发者构建线上和线下都能很好地使用的Web应用程序,在应用程序离线的时候, ...

  3. Windows搭建python开发环境[一]

    首先需要去python的官网下载环境.鼠标移动到Downloads的tab上,在这里可以下载. python的环境还是很人性化的,没有那么多罗里吧嗦的配置什么的,下载好以后直接无脑next就行了,直到 ...

  4. Java 中 List 向前和向后遍历

    Java 中 List 向前和向后遍历 import java.util.*; public class TestCollectionIterator { public static void mai ...

  5. thinkphp5.0动态配置

    设置配置参数 使用set方法动态设置参数,例如: Config::set('配置参数','配置值'); // 或者使用助手函数 config('配置参数','配置值'); 也可以批量设置,例如: Co ...

  6. 扩展swap分区

    swap分区在系统的物理内存不够用时,把硬盘的一部分空间释放出来,以供当前运行的程序使用.(临时使用,如果swap分区都不够了还是直接加内存吧) (1).步骤 mkswap /devices(可以是分 ...

  7. BZOJ 2612 [Poi2003]Sums(最短路)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2612 [题目大意] 给定a数组,问num能否被表示为a[1]*x[1]+a[2]*x[ ...

  8. bzoj 2733: [HNOI2012]永无乡 -- 线段树

    2733: [HNOI2012]永无乡 Time Limit: 10 Sec  Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...

  9. js冒泡处理

    <div id="first"> 外层 <span id="second"> 内层 </span> </div> ...

  10. PHP自动加载下——PSR4

    1.先来介绍一下PSR规范 PHP-FIG,它的网站是:www.php-fig.org.就是这个联盟组织发明和创造了PSR规范,其中自动加载涉及其中两个规范,一个是PSR0,一个是PSR4, PSR0 ...