HDU 1695 GCD(容斥定理)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7529 Accepted Submission(s): 2773
pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
2
1 3 1 5 1
1 11014 1 14409 9
Case 1: 9
Case 2: 736427HintFor the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<queue>
#include<stack>
#include<map> #define N 101000 using namespace std; vector<int>q[N];
int num[N];
int a,b,c,d,k; void init(){
for(int i=0;i<=N;i++){
q[i].clear();
}
for(int i=1;i<=100000;i++){
int p = i;
int pi = sqrt(p);
for(int j=2;j<=pi;j++){
if(p%j == 0){
q[i].push_back(j);
while(p%j == 0){
p = p/j;
}
}
}
if(p!=1){
q[i].push_back(p);
}
}
} __int64 IEP(int ii,int pn){
int pt = 0;
__int64 s = 0;
num[pt++] = -1;
for(int i=0;i<q[ii].size();i++){
int l = pt;
for(int j=0;j<l;j++){
num[pt++] = num[j]*q[ii][i]*(-1);
}
}
for(int i=1;i<pt;i++){
s += pn/num[i];
}
return s;
} int main(){
int T;
init();
int kk = 0;
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(b>d){
int e = b;
b = d;
d = e;
}
if(k == 0){
printf("Case %d: 0\n",++kk);
continue;
}
b = b/k;
c = b+1;
d = d/k;
__int64 sum = 0;
for(int i=1;i<=b;i++){
sum += b - IEP(i,b);
}
sum = (sum+1)/2;
for(int i=1;i<=b;i++){
sum += d - c + 1 - IEP(i,d) + IEP(i,c-1);
}
printf("Case %d: %I64d\n",++kk,sum);
}
return 0;
}
HDU 1695 GCD(容斥定理)的更多相关文章
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 容斥+欧拉函数
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...
- HDU - 1695 GCD (容斥+枚举)
题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)
GCD Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissio ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
随机推荐
- Fast-settling synchronous-PWM-DAC filter has almost no ripple
An inexpensive way to implement high-resolution digital-to-analog conversion is to combine microcont ...
- Unity技术面试题
一:什么是协同程序?答:在主线程运行时同时开启另一段逻辑处理,来协助当前程序的执行.换句话说,开启协程就是开启一个可以与程序并行的逻辑.可以用来控制运动.序列以及对象的行为. 二:Unity3d中的碰 ...
- jquery动态创建表格
1.代码实例 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- MySQL 中文乱码解决
測试环境:服务端和client均为win7,MySql数据库.表字符集为utf-8,字段字符集与表一致. 1.使用mysql命令进行操作时的乱码问题解决. (1)设置当前字符集 set names g ...
- 第9章 初识STM32固件库—零死角玩转STM32-F429系列
第9章 初识STM32固件库 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fire ...
- Reservoir Sampling - 蓄水池抽样算法&&及相关等概率问题
蓄水池抽样——<编程珠玑>读书笔记 382. Linked List Random Node 398. Random Pick Index 从n个数中随机选取m个 等概率随机函数面试题总结 ...
- Fibre Channel和Fiber Channel
Fibre Channel也就是"网状通道"的意思,简称FC. 由于Fiber和Fibre只有一字之差,所以产生了很多流传的误解. FC只代表Fibre Channel,而不是 ...
- js 获取url的get传值函数
function getvl(name) { var reg = new RegExp("(^|\\?|&)"+ name +"=([^&]*)(\\s| ...
- WebUploader文件图片上传插件的使用
最近在项目中用到了百度的文件图片上传插件WebUploader.分享给大家 需要在http://fex.baidu.com/webuploader/download.html点击打开链接下载WebUp ...
- ECharts学习总结(二):标签式单文件引入echarts的方法
下载好echarts的库文件.然后在script里面引入. //from echarts example <body> <div id="main" style= ...