D. Fools and Foolproof Roads
 

You must have heard all about the Foolland on your Geography lessons. Specifically, you must know that federal structure of this country has been the same for many centuries. The country consists of n cities, some pairs of cities are connected by bidirectional roads, each road is described by its length li.

The fools lived in their land joyfully, but a recent revolution changed the king. Now the king is Vasily the Bear. Vasily divided the country cities into regions, so that any two cities of the same region have a path along the roads between them and any two cities of different regions don't have such path. Then Vasily decided to upgrade the road network and construct exactly p new roads in the country. Constructing a road goes like this:

  1. We choose a pair of distinct cities uv that will be connected by a new road (at that, it is possible that there already is a road between these cities).
  2. We define the length of the new road: if cities uv belong to distinct regions, then the length is calculated as min(109, S + 1) (S — the total length of all roads that exist in the linked regions), otherwise we assume that the length equals 1000.
  3. We build a road of the specified length between the chosen cities. If the new road connects two distinct regions, after construction of the road these regions are combined into one new region.

Vasily wants the road constructing process to result in the country that consists exactly of q regions. Your task is to come up with such road constructing plan for Vasily that it meets the requirement and minimizes the total length of the built roads.

Input

The first line contains four integers n (1 ≤ n ≤ 105), m (0 ≤ m ≤ 105), p (0 ≤ p ≤ 105), q (1 ≤ q ≤ n) — the number of cities in the Foolland, the number of existing roads, the number of roads that are planned to construct and the required number of regions.

Next m lines describe the roads that exist by the moment upgrading of the roads begun. Each of these lines contains three integers xi,yilixiyi — the numbers of the cities connected by this road (1 ≤ xi, yi ≤ n, xi ≠ yi), li — length of the road (1 ≤ li ≤ 109). Note that one pair of cities can be connected with multiple roads.

Output

If constructing the roads in the required way is impossible, print a single string "NO" (without the quotes). Otherwise, in the first line print word "YES" (without the quotes), and in the next p lines print the road construction plan. Each line of the plan must consist of two distinct integers, giving the numbers of the cities connected by a road. The road must occur in the plan in the order they need to be constructed. If there are multiple optimal solutions, you can print any of them.

Examples
input
9 6 2 2
1 2 2
3 2 1
4 6 20
1 3 8
7 8 3
5 7 2
output
YES
9 5
1 9
Note

Consider the first sample. Before the reform the Foolland consists of four regions. The first region includes cities 1, 2, 3, the second region has cities 4 and 6, the third region has cities 5, 7, 8, the fourth region has city 9. The total length of the roads in these cities is11, 20, 5 and 0, correspondingly. According to the plan, we first build the road of length 6 between cities 5 and 9, then the road of length 23 between cities 1 and 9. Thus, the total length of the built roads equals 29.

题意:

  给你n点m边的无向图;

  你可以加入p条任意边,而使得新图是由q个联通快构成的无向图

  加边规则如下;

    你可以选择两个不同点 相连,无论原来他们是否有边

    你可以选择两个不同点相连,如果他们是不属于同一个联通快,那么新加入的边 的边权必须为 min(1e9,S+1),S表示 这两个联通快的 总边权和

    如果他们属于一个联通快,那么新加入的边 边权必须 为1000

    相连之后,就属于一个联通快了

  是否有方案构成q块

  并且使得新加边的总边权最小

题解:

  并查集维护联通快与边权和

  优先队列每次选择联通快和最小的两个相连

  最后多余的边都连在同样的两个点上就好了

#include<bits/stdc++.h>
#include<queue>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 3e5+, M = 2e5++, mod = 1e9+, inf = 0x3fffffff; int n,m,p,q,edges[N],fa[N],num[N],a[N],vis[N];
vector<pii > ans;
LL sum[N];
int finds(int x) {return fa[x] == x? x:fa[x]=finds(fa[x]);}
struct node{LL value;int id;
bool operator < (const node &r) const
{
return value > r.value;
}
};
int main() {
scanf("%d%d%d%d",&n,&m,&p,&q);
for(int i = ; i <= n; ++i) fa[i] = i,sum[i] = , num[i] = ;
for(int i = ; i <= m; ++i) {
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
int fx = finds(u);
int fy = finds(v);
sum[fx] += w;
if(fx!=fy) {
num[fx] += num[fy];
fa[fy] = fx;
sum[fx] += sum[fy];
}
}
priority_queue<node> Q;
int block = ;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(!vis[fx]) {
Q.push(node{sum[fx],fx});
// cout<<sum[fx]<<" "<<fx<<endl;
block++;
vis[fx] = ;
}
}
block = block - q;
if(block < ) {
puts("NO");
return ;
}
while(!Q.empty() && block--) {
node k = Q.top();
Q.pop();
if(Q.empty()) {break;}
node k2 = Q.top();
Q.pop();
// cout<<k.id<<" "<<k2.id<<endl;
ans.push_back(MP(k.id,k2.id));
num[k.id] += num[k2.id];
fa[k2.id] = fa[k.id];
Q.push(node{k.value+k2.value+min(1000000000LL,k.value+k2.value+),k.id});
p--;
}
if(p < ) {
puts("NO");
return ;
}
if(p) {
int flag = -;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(num[fx]>) {
flag = fx;
// cout<<fx<<endl;
break;
}
} for(int cnt = ,i = ; i <= n; ++i) {
if(finds(i) == flag) {
a[++cnt] = i;
}
if(cnt == ) break;
}
if(flag == -) {
puts("NO");return ;
}
while(p--) {
ans.push_back(MP(a[],a[]));
}
}
puts("YES");
for(int i = ; i < ans.size(); ++i) cout<<ans[i].first<<" "<<ans[i].second<<endl;
return ;
}

  

Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列的更多相关文章

  1. Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集

    D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...

  2. Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集

    B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...

  3. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集

    D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...

  4. Codeforces Round #376 (Div. 2) A B C 水 模拟 并查集

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  5. Codeforces Round #254 (Div. 2) B. DZY Loves Chemistry (并查集)

    题目链接 昨天晚上没有做出来,刚看题目的时候还把题意理解错了,当时想着以什么样的顺序倒,想着就饶进去了, 也被题目下面的示例分析给误导了. 题意: 有1-n种化学药剂  总共有m对试剂能反应,按不同的 ...

  6. Codeforces Round #260 (Div. 1) C. Civilization 树的中心+并查集

    题目链接: 题目 C. Civilization time limit per test1 second memory limit per test256 megabytes inputstandar ...

  7. Codeforces Round #385 (Div. 2)A B C 模拟 水 并查集

    A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...

  8. Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集

    D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)

    题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...

随机推荐

  1. Linux设置交换分区swap

    参考: http://www.vpser.net/opt/vps-add-swap.html https://www.zntec.cn/archives/vps-swap.html http://yz ...

  2. trap

    http://blog.csdn.net/elbort/article/details/8525599 http://mywiki.wooledge.org/SignalTrap

  3. dump、cpio、tar、dd四种备份工具比较

    原文  http://blog.csdn.net/ether_lai/article/details/12656219 dump dump可执行文件系统增量备份的存储操作 ,dump 可将目录或整个文 ...

  4. 右下角浮窗&动画效果

    2015-07-17 11:07:57 CSS #goreg { width: 70px; position: fixed; bottom: 20px; right: 25px; ; opacity: ...

  5. python2.79安装

    从官网下载最新的安装程序,基于windows的,也可以直接百度下载 点击安装,如果其他用户不需要python的话,可以使用第二个,不过我们一般都是单用户,所以没差 选择安装路径,可按默认路径安装,也可 ...

  6. nyoj1000_快速幂_费马小定理

    又见斐波那契数列 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...

  7. 【leetcode】Swap Nodes in Pairs (middle)

    Given a linked list, swap every two adjacent nodes and return its head. For example,Given 1->2-&g ...

  8. 混合高斯模型:opencv中MOG2的代码结构梳理

    /* 头文件:OurGaussmix2.h */ #include "opencv2/core/core.hpp" #include <list> #include&q ...

  9. python数据库(mysql)操作

    http://fantefei.blog.51cto.com/2229719/1282443

  10. Redis事件管理(二)

    Redis的定时器是自己实现的,不是很复杂.说说具体的实现吧. 定时器的存储维护采用的是普通的单向链表结构,具体节点定义为: /*时间定时器结构体*/ typedef struct aeTimeEve ...