Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列
You must have heard all about the Foolland on your Geography lessons. Specifically, you must know that federal structure of this country has been the same for many centuries. The country consists of n cities, some pairs of cities are connected by bidirectional roads, each road is described by its length li.
The fools lived in their land joyfully, but a recent revolution changed the king. Now the king is Vasily the Bear. Vasily divided the country cities into regions, so that any two cities of the same region have a path along the roads between them and any two cities of different regions don't have such path. Then Vasily decided to upgrade the road network and construct exactly p new roads in the country. Constructing a road goes like this:
- We choose a pair of distinct cities u, v that will be connected by a new road (at that, it is possible that there already is a road between these cities).
- We define the length of the new road: if cities u, v belong to distinct regions, then the length is calculated as min(109, S + 1) (S — the total length of all roads that exist in the linked regions), otherwise we assume that the length equals 1000.
- We build a road of the specified length between the chosen cities. If the new road connects two distinct regions, after construction of the road these regions are combined into one new region.
Vasily wants the road constructing process to result in the country that consists exactly of q regions. Your task is to come up with such road constructing plan for Vasily that it meets the requirement and minimizes the total length of the built roads.
The first line contains four integers n (1 ≤ n ≤ 105), m (0 ≤ m ≤ 105), p (0 ≤ p ≤ 105), q (1 ≤ q ≤ n) — the number of cities in the Foolland, the number of existing roads, the number of roads that are planned to construct and the required number of regions.
Next m lines describe the roads that exist by the moment upgrading of the roads begun. Each of these lines contains three integers xi,yi, li: xi, yi — the numbers of the cities connected by this road (1 ≤ xi, yi ≤ n, xi ≠ yi), li — length of the road (1 ≤ li ≤ 109). Note that one pair of cities can be connected with multiple roads.
If constructing the roads in the required way is impossible, print a single string "NO" (without the quotes). Otherwise, in the first line print word "YES" (without the quotes), and in the next p lines print the road construction plan. Each line of the plan must consist of two distinct integers, giving the numbers of the cities connected by a road. The road must occur in the plan in the order they need to be constructed. If there are multiple optimal solutions, you can print any of them.
9 6 2 2
1 2 2
3 2 1
4 6 20
1 3 8
7 8 3
5 7 2
YES
9 5
1 9
Consider the first sample. Before the reform the Foolland consists of four regions. The first region includes cities 1, 2, 3, the second region has cities 4 and 6, the third region has cities 5, 7, 8, the fourth region has city 9. The total length of the roads in these cities is11, 20, 5 and 0, correspondingly. According to the plan, we first build the road of length 6 between cities 5 and 9, then the road of length 23 between cities 1 and 9. Thus, the total length of the built roads equals 29.
题意:
给你n点m边的无向图;
你可以加入p条任意边,而使得新图是由q个联通快构成的无向图
加边规则如下;
你可以选择两个不同点 相连,无论原来他们是否有边
你可以选择两个不同点相连,如果他们是不属于同一个联通快,那么新加入的边 的边权必须为 min(1e9,S+1),S表示 这两个联通快的 总边权和
如果他们属于一个联通快,那么新加入的边 边权必须 为1000
相连之后,就属于一个联通快了
是否有方案构成q块
并且使得新加边的总边权最小
题解:
并查集维护联通快与边权和
优先队列每次选择联通快和最小的两个相连
最后多余的边都连在同样的两个点上就好了
#include<bits/stdc++.h>
#include<queue>
using namespace std;
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 3e5+, M = 2e5++, mod = 1e9+, inf = 0x3fffffff; int n,m,p,q,edges[N],fa[N],num[N],a[N],vis[N];
vector<pii > ans;
LL sum[N];
int finds(int x) {return fa[x] == x? x:fa[x]=finds(fa[x]);}
struct node{LL value;int id;
bool operator < (const node &r) const
{
return value > r.value;
}
};
int main() {
scanf("%d%d%d%d",&n,&m,&p,&q);
for(int i = ; i <= n; ++i) fa[i] = i,sum[i] = , num[i] = ;
for(int i = ; i <= m; ++i) {
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
int fx = finds(u);
int fy = finds(v);
sum[fx] += w;
if(fx!=fy) {
num[fx] += num[fy];
fa[fy] = fx;
sum[fx] += sum[fy];
}
}
priority_queue<node> Q;
int block = ;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(!vis[fx]) {
Q.push(node{sum[fx],fx});
// cout<<sum[fx]<<" "<<fx<<endl;
block++;
vis[fx] = ;
}
}
block = block - q;
if(block < ) {
puts("NO");
return ;
}
while(!Q.empty() && block--) {
node k = Q.top();
Q.pop();
if(Q.empty()) {break;}
node k2 = Q.top();
Q.pop();
// cout<<k.id<<" "<<k2.id<<endl;
ans.push_back(MP(k.id,k2.id));
num[k.id] += num[k2.id];
fa[k2.id] = fa[k.id];
Q.push(node{k.value+k2.value+min(1000000000LL,k.value+k2.value+),k.id});
p--;
}
if(p < ) {
puts("NO");
return ;
}
if(p) {
int flag = -;
for(int i = ; i <= n; ++i) {
int fx = finds(i);
if(num[fx]>) {
flag = fx;
// cout<<fx<<endl;
break;
}
} for(int cnt = ,i = ; i <= n; ++i) {
if(finds(i) == flag) {
a[++cnt] = i;
}
if(cnt == ) break;
}
if(flag == -) {
puts("NO");return ;
}
while(p--) {
ans.push_back(MP(a[],a[]));
}
}
puts("YES");
for(int i = ; i < ans.size(); ++i) cout<<ans[i].first<<" "<<ans[i].second<<endl;
return ;
}
Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列的更多相关文章
- Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集
D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...
- Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集
B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...
- Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集
D. Dividing Kingdom II 题目连接: http://www.codeforces.com/contest/687/problem/D Description Long time a ...
- Codeforces Round #376 (Div. 2) A B C 水 模拟 并查集
A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...
- Codeforces Round #254 (Div. 2) B. DZY Loves Chemistry (并查集)
题目链接 昨天晚上没有做出来,刚看题目的时候还把题意理解错了,当时想着以什么样的顺序倒,想着就饶进去了, 也被题目下面的示例分析给误导了. 题意: 有1-n种化学药剂 总共有m对试剂能反应,按不同的 ...
- Codeforces Round #260 (Div. 1) C. Civilization 树的中心+并查集
题目链接: 题目 C. Civilization time limit per test1 second memory limit per test256 megabytes inputstandar ...
- Codeforces Round #385 (Div. 2)A B C 模拟 水 并查集
A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集
D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #329 (Div. 2) D. Happy Tree Party(LCA+并查集)
题目链接 题意:就是给你一颗这样的树,用一个$y$来除以两点之间每条边的权值,比如$3->7$,问最后的y的是多少,修改操作是把权值变成更小的. 这个$(y<=10^{18})$除的权值如 ...
随机推荐
- ios 把已经点击过的UILocalNotification 从系统的通知中心现实中移除
在ios7 上一个uilocalnotification在中心现实后,点击该消息,程序被唤醒了,但是该通知没有被移除.用了以下的代码后可以解决这个问题 UIApplication.sh ...
- perl 从文件里读出变量无法使用解决办法
最近在写一个perl函数,把test case 放到配置文件里,读出来然后使用system运行. 我的本意是: 配置文件conf ping -c $count $ip #在主程序中定义$ip和$cou ...
- ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)
看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...
- SAP 工厂日生产计划待排维护
*&---------------------------------------------------------------------* *& Report ZPPR0024 ...
- codeforces 449B Jzzhu and Cities (Dij+堆优化)
输入一个无向图<V,E> V<=1e5, E<=3e5 现在另外给k条边(u=1,v=s[k],w=y[k]) 问在不影响从结点1出发到所有结点的最短路的前提下,最多可以 ...
- EF性能调优
首先说明下: 第一次运行真是太慢了,处理9600多个员工数据,用了81分钟!! 代码也挺简单,主要是得到数据-->对比分析-->插入分析结果到数据库.用的是EF的操作模式. public ...
- printf 与c的基本类型之间的关系
型 書式 注意事項 ssize_t %zd size_t %zu intmax_t %jd uintmax_t %ju ptrdiff_t %t signed char %hhd unsigned c ...
- C#命名规范的几点建议
1.最好以<Company>.<Component>做为namespace的格式 2.考虑是否需要将namespace设置为复数,如:FCL中的System.Collectio ...
- NYOJ题目170网络的可靠性
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAs8AAANvCAIAAACte6C6AAAgAElEQVR4nOydPbLcNhOu7yaUayGOZy
- 数据结构和算法 – 番外篇.时间测试类Timing
public class Timing { //startingTime--用来存储正在测试的代码的开始时间. TimeSpan startingTime; //duration--用来存储正在测试的 ...