【poj3264】 Balanced Lineup
http://poj.org/problem?id=3264 (题目链接)
题意
给出序列,求区间最大值-最小值
Solution
无修改,询问较多,ST表水一发。
ST算法(Sparse Table):
它是一种动态规划的方法。以最小值为例。a为所寻找的数组,用一个二维数组 f(i,j) 记录区间 [i,i+2^j-1] 区间中的最小值。其中 f[i,0] = a[i] ; 所以,对于任意的一组 (i,j),f(i,j) = min{ f(i,j-1),f(i+2^(j-1),j-1)} 来使用动态规划计算出来。
这个算法的高明之处不是在于这个动态规划的建立,而是它的查询:它的查询效率是O(1)!如果不细想的话,怎么弄也是不会想到有O(1)的算法的。
假设我们要求区间[m,n]中a的最小值,找到一个数k使得2^k<n-m+1,即k=[ln(b-a+1)/ln(2)] 这样,可以把这个区间分成两个部分:[m,m+2^k-1]和[n-2^k+1,n]!我们发现,这两个区间是已经初始化好的!前面的区间是f(m,k),后面的区间是f(n-2^k+1,k)!这样,只要看这两个区间的最小值,就可以知道整个区间的最小值!
代码
// poj3264
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=50010;
int bin[30],a[maxn],mn[maxn][30],mx[maxn][30];
int n,m; void build() {
for (int i=1;i<=n;i++) mx[i][0]=mn[i][0]=a[i];
for (int j=1;j<=20;j++)
for (int i=1;i+bin[j]<=n+1;i++)
mn[i][j]=min(mn[i][j-1],mn[i+bin[j-1]][j-1]);
for (int j=1;j<=20;j++)
for (int i=1;i+bin[j]<=n+1;i++)
mx[i][j]=max(mx[i][j-1],mx[i+bin[j-1]][j-1]);
}
int query(int l,int r) {
int x=log(r-l+1)/log(2);
int a=max(mx[l][x],mx[r-bin[x]+1][x]);
int b=min(mn[l][x],mn[r-bin[x]+1][x]);
return a-b;
}
int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
build();
for (int x,y,i=1;i<=m;i++) {
scanf("%d%d",&x,&y);
printf("%d\n",query(x,y));
}
return 0;
}
【poj3264】 Balanced Lineup的更多相关文章
- 【POJ3264】Balanced Lineup(RMQ)
题意:每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛 ...
- 【USACO】 Balanced Lineup
[题目链接] 点击打开链接 [算法] 这是一道经典的最值查询(RMQ)问题. 我们首先想到线段树.但有没有更快的方法呢?对于这类问题,我们可以用ST表(稀疏表)算法求解. 稀疏表算法.其实也是一种动态 ...
- 【LeetCode】Balanced Binary Tree 解题报告
[题目] Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced bi ...
- 【USACO】 Balanced Photo
[题目链接] 点击打开链接 [算法] 树状数组 [代码] #include<bits/stdc++.h> using namespace std; int i,N,ans,l1,l2; ] ...
- 【leetcode】Balanced Binary Tree(middle)
Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...
- 【LeetCode】Balanced Binary Tree 算法优化 解题报告
Balanced Binary Tree Better Solution [LeetCode] https://leetcode.com/submissions/detail/40087813/ To ...
- 【HDOJ】【3709】Balanced Bumber
数位DP 题解:http://www.cnblogs.com/algorithms/archive/2012/09/02/2667637.html dfs的地方没太看懂……(也就那里是重点吧喂!)挖个 ...
- 【hdu3709】 Balanced Number
http://acm.hdu.edu.cn/showproblem.php?pid=3709 (题目链接) 题意 求范围${[a,b]}$之间的平衡数的个数,所谓平衡数就是以某一位为支点,两侧的力矩相 ...
- POJ3264:Balanced Lineup——题解+st表解释
我早期在csdn的博客之一,正好复习st表就拿过来.http://write.blog.csdn.net/mdeditor#!postId=63713810 这道题其实本身不难(前提是你得掌握线段树或 ...
随机推荐
- android 中退出程序的两种方式
转自:http://blog.sina.com.cn/s/blog_5da93c8f0100t76l.html 思考:如何安全的退出程序? finish是Activity的类,仅仅针对Activity ...
- C#——Marshal.StructureToPtr方法简介
目录 MarshalStructureToPtr方法简介 功能及位置 语法 参数说明 异常 备注 举例 本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三 ...
- PCL 库安装
参考资料: http://www.cnblogs.com/newpanderking/articles/4022322.html VS2010+PCL配置 PCL共有两种安装方式 安全安装版,个人配置 ...
- Oracle:ODP.NET Managed 小试牛刀
“ODP.NET Managed”发布已经有一段时间了,近期正好有一个新项目,想尝试用一下,参考园子里的文章:<.NET Oracle Developer的福音——ODP.NET Managed ...
- SM2国密证书合法性验证
通常我们遇到过的X509证书都是基于RSA-SHA1算法的,目前国家在大力推行国密算法,未来银行发行的IC卡也都是基于PBOC3.0支持国密算法的,因此我们来学习一下如何验证SM2国密证书的合法性.至 ...
- 《DOM启蒙》 随笔
使用 Javascript 字符串创建并向 DOM 中添加元素与文本节点 innerHTML.outerHTML.textContent 及 insertAdjacentHTML() 属性和方法提供了 ...
- 彻底理解Toast原理和解决小米MIUI系统上没法弹Toast的问题
1.Toast的基本使用 Toast在Android中属于系统消息通知,用来提示用户完成了什么操作.或者给用户一个必要的提醒.Toast的官方定义是这样的: A toast provides simp ...
- 微信公众平台SDK
微信公众平台网址:https://mp.weixin.qq.com/ 服务号说明:给企业和组织提供更强大的业务服务与用户管理能力,帮助企业快速实现全新的公众号服务平台. .NETSDK: Loogn. ...
- Resharper快捷键
建议你使用 Reshaper 的快捷键,不要担心 Reshaper 会把你原来的快捷键设置给覆盖了,因为如果某个快捷键和 VS 是冲突的,Reshaper会让你自己选择需要使用 VS 还是 Resha ...
- 牛逼的OSQL----大数据导入
详情见链接: http://www.cnblogs.com/dunitian/p/5276449.html