题目大意:

给N个东西分AB类,分到A类和B类分别得到相应的钱记为A[i],B[i],然后有一些冲突关系<x,y,z>,如果物品x,y不同类需要付出z的钱。还有一些外快<S,x,y>,当某个集合里的元素都是x类的时候得到y的钱。 求最大收益。

思路:

1.如果只考虑冲突关系,那么就是非常裸的最小割,显然这题应该在最小割的基础上加点东东. 然后集合附加权貌似是个比较经典的东西(虽然我也是做了这题才知道...),我这种蒟蒻肯定不能独立AC啦,于是愉快地看了题解。貌似和BZOJ3438是差不多的,所以搜这题的题解的时候可以搜BZOJ3438的题解。

2.总结了一下前人经验发现大致有两种构图方法。其中方法二貌似只有一个博客里看到,感觉比较厉害,而且比较好理解。。

共同点:对于冲突<x,y,z>,连边<x,y,z> <y,x,z> (格式为<点,点,容量>).

方法一:

先把所有的钱加起来减去最小割就是答案。 对于附加权,A类集合搞一个新的点P,从P向集合中的点连边,容量无穷大,从S向P连边容量为附加权.  B类集合同理,不过是从集合中的点连边到P,容量无穷大,从P到T连边容量为附加权。 对于每个点x,连边<S,x,A[i]> <x,T,B[i]>.

下面是本人YY的大致证明:其他的就不多说了,证明附加权的部分。

对于A类集合点P,如果边<S,P>被割掉了,那么必定有集合中的某个点x,<S,x>也被割掉了(反证:如果不成立,那么完全没必要割<S,P>),实际意义是集合中的元素不全是属于A类,所以扣掉代价,也就是这条边的容量。

对于B类集合点P,如果边<P,T>被割掉了,那么必定有集合中的某个点x,从S有路到x(反证:如果不成立,那么完全没必要割<P,T>),实际意义是集合中的元素不全是属于B类,所以扣掉代价,也就是这条边的容量。

方法二:

转化为最大权闭合图。假设所有点都被分到A类,所以把A[i]都加起来,还要加上A类集合的附加权.然后构造带权闭合图。一个点的点权为B[i]-A[i],实际意义是把它从A类变成B类的代价。 然后考虑附加权。  A类集合的附加权:搞一个新的点P,P的点权是附加权的相反数,从集合中的元素连边到P, 根据闭合图的定义,如果集合中的某个元素x选来了,也就是x变成了B类,那么P点也必须选来,所以就把相应的钱扣掉。 B类集合的附加权:搞一个新的点P,P的点权是附加权,从P连边到集合中的元素,表示如果要赚P的钱,必须把集合中的元素都变成B类。   然后就是最大权闭合图的做法了,具体不再赘述。

退役好久没做题,dinic的写不对了。。

Mike的农场 (BZOJ 4177)的更多相关文章

  1. bzoj 4177 Mike的农场

    bzoj 4177 Mike的农场 思维有些江化了,一上来就想费用流做法,但其实就是个最小割啊. 考虑先将所有的收益拿到,再减去不能拿的以及三元组 \((i,j,k)\) 产生的代价.即,先让 \(a ...

  2. BZOJ 4177: Mike的农场( 最小割 )

    显然是最小割... 对于规律(i, j, k) i,j 互相连边, 容量为k 对于规则(S, a, b) 新建一个点x, x与S中每个点连一条弧, 容量+∞, 然后再根据a决定x与源点或汇点连边. 跑 ...

  3. bzoj4177: Mike的农场

    类似于最大权闭合图的思想. #include<cstdio> #include<cstring> #include<iostream> #include<al ...

  4. 【BZOJ4177】Mike的农场 最小割

    [BZOJ4177]Mike的农场 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中 ...

  5. 【bzoj4177】Mike的农场 网络流最小割

    题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...

  6. Mike的农场

    题目 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元, ...

  7. Mike的农场 BZOJ4177

    分析: 最小割,不选则割的建模题...(然而一开始我当成了费用流,简直丧心病狂...最后想到了最小割...) 对于条件一,直接建一条双向边就可以了,并且不计入sum中,因为这是作为费用的存在,让它跑出 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

随机推荐

  1. paper 112:hellinger distance

    在概率论和统计理论中,Hellinger距离被用来度量两个概率分布的相似度.它是f散度的一种(f散度——度量两个概率分布相似度的指标).Hellinger距离被定义成Hellinger积分的形式,这种 ...

  2. Excel应该这么玩——2、命名列:消除地址引用

    命名列:通过名称引用列,让公式更容易理解. 下面继续举上次的栗子. 1.历史遗留问题 之前虽然把数字编成了命名单元格,但其中还是有单元格地址B2.C2之类,要理解公式需要找到对应的列标题. 特别是像下 ...

  3. Openstack的web管理端相关

    openstack的web管理端技术方面要关注的问题. 同步?异步 先说浏览器的同步和异步,我们知道的浏览器可以使用ajax实现异步请求,就是浏览器在请求数据的时候,我们管理员还能对浏览器就行其他操作 ...

  4. HttpClient请求返回JSON、图片

    /** * Created by RongGuang on 2015/9/19. */ public class RongHttp { /** * Http Post请求 * @param url * ...

  5. 滑动的Button

    在介绍SwitchButton之前,先来看一下系统Button是如何实现的.源码如下: @RemoteView public class Button extends TextView { publi ...

  6. fgets函数

    打开文件 fopen("需要打开的路径") 然后使用fgets函数读取行 #include <stdio.h> #include <stdlib.h> #i ...

  7. 解决secureCRT数据库里没有找到防火墙 '无'问题

    中文版的secureCRT由于汉化的问题(把null翻译成无了),导致每次打开都会有个防火墙的错误提示:数据库里没有找到防火墙 '无' 此会话将尝试不通过防火墙进行连接.出现这个错误的原因是在secu ...

  8. Oracle分组排序查询

    用sql查询每个分组中amount最大的前两条记录: SELECT *FROM HW trWHERE(SELECT COUNT(*) FROM HW WHERE tr.DEPID=DEPID AND ...

  9. 探究platform_driver中的shutdown用途

    http://blog.csdn.net/moxiaomomo/article/details/7897943 "quiesce" 说的也不太明确,我的猜测是:比如系统中有一个大功 ...

  10. word2013 blog test

    测试一:style里的内容能保存吗?: int        read; byte *    buf; int        tries; int        read; byte *    buf ...