题目大概是说n个人两两进行比赛,问如何安排几场比赛的输赢使得A胜B,B胜C,C胜A这种剪刀石头布的三元组最多。

这题好神。

  • 首先,三元组总共有$C_n^3$个
  • 然后考虑最小化不满足剪刀石头布条件的三元组个数,而要求的结果就是总数-这个不满足的个数了:
    1. 对于三个人构不成剪刀石头布现象,当且仅当,其中一个人赢了其他两个人
    2. 而由于这是完全图,如果一个人赢了$x_i$场那么包含这个人且这个人赢的次数最多的不满足剪刀石头布现象的三元组就有$C_{x_i}^2$个
    3. 所以目的就是最小化$\sum C_{x_i}^2$,即$\sum x_i^2-C_n^2$,其中$C_n^2$是常数可以拿开
  • 考虑用最小费用最大流求解$\sum x_i^2$的最小值,源点-比赛-人-汇点这样连边:
    1. 源点到各个比赛的边是容量1费用0
    2. 比赛到人是容量1费用0的边
    3. 而人到汇点,根据那个目标式,可知如果流量是$f$,那么费用是$f^2$,解决的方式就是依次连接容量1费用分别是1、3、5、7、9……的边!
  • 构图完毕跑最小费用最大流,最多的剪刀石头布现象数就是$C_n^3-(MCMF-C_n^2)$,最后再遍历一下残量网络输出方案即可
 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 11111
#define MAXM 111111*4
struct Edge{
int u,v,cap,cost,next;
}edge[MAXM];
int vs,vt,NV,NE,head[MAXN];
void addEdge(int u,int v,int cap,int cost){
edge[NE].u=u; edge[NE].v=v; edge[NE].cap=cap; edge[NE].cost=cost;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].u=v; edge[NE].v=u; edge[NE].cap=; edge[NE].cost=-cost;
edge[NE].next=head[v]; head[v]=NE++;
}
int d[MAXN],pre[MAXN];
bool vis[MAXN];
bool SPFA(){
for(int i=; i<NV; ++i){
d[i]=INF; vis[i]=;
}
d[vs]=; vis[vs]=;
queue<int> que;
que.push(vs);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap && d[v]>d[u]+edge[i].cost){
d[v]=d[u]+edge[i].cost;
pre[v]=i;
if(!vis[v]){
vis[v]=;
que.push(v);
}
}
}
vis[u]=;
}
return d[vt]!=INF;
}
int MCMF(){
int res=;
while(SPFA()){
int flow=INF,cost=;
for(int u=vt; u!=vs; u=edge[pre[u]].u){
flow=min(flow,edge[pre[u]].cap);
}
for(int u=vt; u!=vs; u=edge[pre[u]].u){
edge[pre[u]].cap-=flow;
edge[pre[u]^].cap+=flow;
cost+=flow*edge[pre[u]].cost;
}
res+=cost;
}
return res;
}
int ans[][];
int main(){
int n,a;
scanf("%d",&n);
vs=n*n+n; vt=vs+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<n; ++i){
int cost=;
for(int j=; j<=n; ++j){
addEdge(n*n+i,vt,,cost);
cost+=;
}
}
for(int i=; i<n; ++i){
for(int j=; j<n; ++j){
scanf("%d",&a);
if(i>=j) continue;
addEdge(vs,i*n+j,,);
if(a==){
addEdge(i*n+j,n*n+i,,);
}else if(a==){
addEdge(i*n+j,n*n+j,,);
}else{
addEdge(i*n+j,n*n+i,,);
addEdge(i*n+j,n*n+j,,);
}
}
}
printf("%d\n",n*(n-)*(n-)/-(MCMF()-(n-)*n/)/);
for(int x=; x<n; ++x){
for(int y=x+; y<n; ++y){
for(int i=head[x*n+y]; i!=-; i=edge[i].next){
if(i& || edge[i].cap) continue;
if(edge[i].v==x+n*n){
ans[x][y]=; ans[y][x]=;
}else{
ans[x][y]=; ans[y][x]=;
}
}
}
}
for(int i=; i<n; ++i){
for(int j=; j<n; ++j) printf("%d ",ans[i][j]);
putchar('\n');
}
return ;
}

BZOJ2597 [Wc2007]剪刀石头布(最小费用最大流)的更多相关文章

  1. 【BZOJ-2597】剪刀石头布 最小费用最大流

    2597: [Wc2007]剪刀石头布 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1016  Solved:  ...

  2. bzoj2597: [Wc2007]剪刀石头布(费用流)

    传送门 不得不说这思路真是太妙了 考虑能构成三元组很难,那我们考虑不能构成三元组的情况是怎么样 就是说一个三元组$(a,b,c)$,其中$a$赢两场,$b$赢一场,$c$没有赢 所以如果第$i$个人赢 ...

  3. [bzoj2597][Wc2007]剪刀石头布_费用流

    [Wc2007]剪刀石头布 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=2597 题解: 发现直接求三元环不好求,我们考虑任选三个点不是 ...

  4. BZOJ2597 WC2007剪刀石头布(费用流)

    考虑使非剪刀石头布情况尽量少.设第i个人赢了xi场,那么以i作为赢家的非剪刀石头布情况就为xi(xi-1)/2种.那么使Σxi(xi-1)/2尽量小即可. 考虑网络流.将比赛建成一排点,人建成一排点, ...

  5. BZOJ2597 [Wc2007]剪刀石头布 【费用流】

    题目链接 BZOJ2597 题解 orz思维差 既然是一张竞赛图,我们选出任意三个点都可能成环 总方案数为 \[{n \choose 3}\] 如果三个点不成环,会发现它们的度数是确定的,入度分别为\ ...

  6. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  7. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  8. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  9. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

随机推荐

  1. oracle 监控

    sqlplus "/as sysdba" .监控当前数据库谁在运行什么SQL语句 SELECT osuser, username, sql_text from v$session ...

  2. 股票交易(洛谷U6084)

    题目背景 kkk最近迷上了炒股. 题目描述 kkk炒了N天股,第i天的股价为a[i]元.kkk希望股票每天都上涨1元钱,但是操盘手lzn并不想让kkk赚很多钱导致他亏本,于是a[i]相对a[i-1]就 ...

  3. 浅析_tmain()与main()的区别

    转自http://www.jb51.net/article/34516.htm _tmain()是为了支持unicode所使用的main一个别名,既然是别名,应该有宏定义过的,在哪里定义的呢?就在那个 ...

  4. JS获取阴历阳历和星期

    获取当前阳历日期时间,阴历日期和星期,三者分开,可自行调整顺序.  新建JS文件getdates.js,代码如下:/*获取当前阳历日期*/function getCurrentDateTime() { ...

  5. NYOJ题目766回文数

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsgAAAHaCAIAAACSPygsAAAgAElEQVR4nO3dO3LqSheG4X8S5AyEWB ...

  6. 使用drozer连接时提示:Could not find java. Please ensure that it is installed and on your path

    在安装drozer后使用 drozer.bat console connect命令提示如下错误(实际上我已经安装了jdk并添加了path) 参考上面的链接已经它的提示解决方法如下: 建立名为 .dro ...

  7. Android -- android.os.Parcelable[] cannot be cast to ...

    我本想直接把Bunde.getParcelableArray(...)得到的Parcelable[]强制转换为自定义类数组,但是失败了,网上找了两种解决办法: Parcelable[] data =b ...

  8. CLR via C#(07)-静态类,分部类

    一.      静态类-Static 静态类是一些不能实例化的类,它的作用是将一些相关的成员组合到一起,像我们常见的Math, Console等.静态类由static关键字标识,静态类成员也只能是st ...

  9. jquery学习笔记----jquery相关的文档

    http://tool.oschina.net/apidocs/apidoc?api=jquery http://www.w3school.com.cn/jquery/jquery_ref_event ...

  10. 学习SQLAlchemy Core

    有时间了就要慢慢看,死守DJANGO ORM,明显没有SQLAlchemy有优势. 因为SQLAlchemy针对整个PYTHON都是有用的. 找了本书,慢慢撸. <Essential.SQLAl ...