一开始我用分块大法,分成$\sqrt{n}$块,每个块上维护一个Splay,然后balabala维护一下,时间复杂度是$O(n\sqrt{n}logn)$。后来对拍的时候发现比$O(n^2)$的暴力跑得还慢,xxy学长说是Splay常数太大2333333

考试的时候没想到可以在每个块上建一个$10^5$的数组来存储每个数字出现的次数,而是用了常数巨大且复杂度多了一个log的SplayQwQ,发现自己完全没有对空间复杂度的认识啊(┙>∧<)┙へ┻┻

标算是块状链表,什么balabala比较基础地维护,卡着空间开2333333

我把块的大小设为$[\frac{\sqrt{n}}{2},\sqrt{n}×2)$,在codevs上TLE,,,

后来把块的大小改成了$[\sqrt{n},\sqrt{n}×2)$,1s内能轻松跑过。

也许是因为某些玄学的原因吧,,,

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100000;
const int B = 316;
const int BB = 632; int in() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 3) + (k << 1) + c - '0';
return k * fh;
} struct BLOCK {
BLOCK() {
nxt = NULL;
len = 0;
memset(times, 0, sizeof(times));
}
BLOCK *nxt;
int a[BB + B + 3], times[N + 1], len;
}; int cnt = 0;
int n; namespace BlockList {
BLOCK *head;
void Build(BLOCK * t) {head = t;}
void split(BLOCK *r) {
int rlen = r->len / 2, tlen = r->len - rlen, to = rlen;
BLOCK *t = new BLOCK;
memcpy(t->a + 1, r->a + rlen + 1, sizeof(int) * tlen);
for(int i = 1; i <= tlen; ++i) {
++t->times[t->a[i]];
--r->times[t->a[i]];
}
t->len = tlen;
r->len = rlen;
t->nxt = r->nxt;
r->nxt = t;
}
void merge(BLOCK *r) {
BLOCK *t = r->nxt;
if (t == NULL) return;
int tlen = t->len, to = r->len;
memcpy(r->a + to + 1, t->a + 1, sizeof(int) * tlen);
for(int i = 1; i <= tlen; ++i)
++r->times[t->a[i]];
r->len += tlen;
t = t->nxt;
delete r->nxt;
r->nxt = t;
if (r->len >= BB) split(r);
}
BLOCK *find(int &k) {
BLOCK *t = head;
while (k - t->len > 0 && t != NULL) {
k -= t->len;
t = t->nxt;
}
return t;
}
void work(int l, int r) {
BLOCK *t = find(r);
int num = t->a[r];
--t->times[num];
int tlen = --t->len;
for(int i = r; i <= tlen; ++i)
t->a[i] = t->a[i + 1];
if (t->len < B) merge(t);
t = find(l);
for(int i = ++t->len; i > l; --i)
t->a[i] = t->a[i - 1];
t->a[l] = num;
++t->times[num];
if (t->len >= BB) split(t);
}
int query(int l, int r, int k) {
BLOCK *tl = find(l), *tr = find(r);
int ret = 0;
if (tl == tr) {
for(int i = l; i <= r; ++i)
if (tl->a[i] == k) ++ret;
return ret;
} else {
int lentl = tl->len;
for(int i = l; i <= lentl; ++i)
if (tl->a[i] == k) ++ret;
for(int i = 1; i <= r; ++i)
if (tr->a[i] == k) ++ret;
for(tl = tl->nxt; tl != tr && tl != NULL; ret += tl->times[k], tl = tl->nxt);
return ret;
}
}
} int main() {
n = in();
int c = 0, k;
BLOCK *tmp = new BLOCK;
BlockList::Build(tmp);
for(int i = 1; i <= n; ++i) {
++c;
if (c > B) {
c = 1;
tmp->len = B;
tmp->nxt = new BLOCK;
tmp = tmp->nxt;
}
k = in();
tmp->a[c] = k;
++tmp->times[k];
}
tmp->len = c;
int m = in(), op, l, r;
while (m--) {
op = in(); l = in(); r = in();
if (op == 1)
BlockList::work(l, r);
else {
k = in();
printf("%d\n", BlockList::query(l, r, k));
}
}
return 0;
}

继续颓文化课,期末考试Bless All!

【CodeVS 5032】【省队集训2016 Day5 T1】Play with array的更多相关文章

  1. [2018湖南省队集训] 6.24 T1 marshland

    题面在这里! 一开始感觉像一个类似二分图的最小割,于是成功跑偏2333333 很容易发现一个关键性质,'L'的两个角落在的偶数格 的行(或者列)的奇偶性一定不同.... 于是我们再把偶数格按照行(或者 ...

  2. JS省队集训记

    不知不觉省队集训已经结束,离noi也越来越近了呢 论考前实战训练的重要性,让我随便总结一下这几天的考试 Day 1 T1 唉,感觉跟xj测试很像啊?meet in middle,不过这种题不多测是什么 ...

  3. HN2018省队集训

    HN2018省队集训 Day1 今天的题目来自于雅礼的高二学长\(dy0607\). 压缩包下载 密码: 27n7 流水账 震惊!穿着该校校服竟然在四大名校畅通无阻?霸主地位已定? \(7:10\)从 ...

  4. 2018HN省队集训

    HNOI2018省队集训 Day 1 流水账 T1 tree 换根+求\(lca\)+求子树和,一脸bzoj3083遥远的国度的既视感.子树和讨论一下就好了,\(lca\)?也是大力讨论一波. 先写了 ...

  5. 2017FJ省队集训 游记

    2017FJ省队集训 游记 又是一篇流水账 Day 1 今天是省队集训的第一天.早上骑车去八中,到的时候汗流太多浑身湿透被杨哥哥和runzhe2000 d了,一个说我去游泳了一个说我打球了...流完汗 ...

  6. UOJ #274. 【清华集训2016】温暖会指引我们前行 [lct]

    #274. [清华集训2016]温暖会指引我们前行 题意比较巧妙 裸lct维护最大生成树 #include <iostream> #include <cstdio> #incl ...

  7. UOJ_274_[清华集训2016]温暖会指引我们前行_LCT

    UOJ_274_[清华集训2016]温暖会指引我们前行_LCT 任务描述:http://uoj.ac/problem/274 本题中的字典序不同在于空串的字典序最大. 并且题中要求排序后字典序最大. ...

  8. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  9. UOJ #269. 【清华集训2016】如何优雅地求和

    UOJ #269. [清华集训2016]如何优雅地求和 题目链接 给定一个\(m\)次多项式\(f(x)\)的\(m+1\)个点值:\(f(0)\)到\(f(m)\). 然后求: \[ Q(f,n,x ...

随机推荐

  1. (三)策略模式-C++实现

    策略模式:定义一系列算法,把它们一个个封装起来,并且使它们可以相互替换,本模式使得算法可独立于使用它的客户而变化. 三种角色: 1.策略:一个抽象类,这个接口定义了若干个算法标识,即多个虚函数,这些个 ...

  2. (二)工厂方法模式-C++实现

    工厂方法模式:定义一个用于创建对象的借口,让子类决定实例化哪一个类. Factory method使一个类的实例化延迟到子类. 当系统准备为用户提供某个类的子类的实例,又不想让用户代码和孩子类形成耦合 ...

  3. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  4. jmeter的压力测试

    Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试. 以下为压力测试的简单介绍 1.在测试计划下增加一个线程组 2.线程组的内容需要进行编辑,根据压力测 ...

  5. [No000057]一个人默默背单词,小心被传染哦

    不日凛冬将至,全国各地,已有多名少侠因季节变化,出现了不同程度的四肢不勤.bd不分的症状.具体表现为—— 包大人在此高能预警:不想背单词,有可能你已经被传染了. 好好的,怎么突然不想背单词了 哈佛医学 ...

  6. iOS中NSScanner 的用法

    NSScanner是一个类,用于在字符串中扫描指定的字符,尤其是把它们翻译/转换为数字和别的字符串.可以创建NSScanner时制定他的String属性,然后scanner会按照你的要求从头到尾扫描这 ...

  7. asp.net webapi支持跨域

    1.Install-Package Microsoft.AspNet.WebApi.Cors 2. using System.Web.Http; namespace WebService {     ...

  8. 用mysql触发器实现log记录

    首先建立两张测试用表 mysql> desc pay; +-------+---------------+------+-----+---------+----------------+ | F ...

  9. MVP 实例

    引言 可能有的朋友已经看过我翻译的Jean-Paul Boodhoo的 模型-视图-提供器 模式 一文了(如果没有,建议你先看下再看这篇文章,毕竟这两篇是紧密联系的).在那篇文章中,作者为了说明 MV ...

  10. 【开源】分享一个前后端分离方案-前端angularjs+requirejs+dhtmlx 后端asp.net webapi

    一.前言 半年前左右折腾了一个前后端分离的架子,这几天才想起来翻出来分享给大家.关于前后端分离这个话题大家也谈了很久了,希望我这个实践能对大家有点点帮助,演示和源码都贴在后面. 二.技术架构 这两年a ...