题目链接:51nod 1135 原根

设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根。(其中φ(m)表示m的欧拉函数)

阶:gcd(a,m)=1,使得成立的最小的 r,称为 a 对 模m 的 阶。

φ(m):在[1,m)的区间内与m互质的数的个数。

求模素数p的原根a的方法:

因为p为素数,所以φ(p)=p-1, 这题就是要找最小的a使得 a^(p-1)%p = 1 成立(根据费马小定理,该式一定成立),

先求p-1所有不同的 质因子 p1,p2…pm,

对任何整数 a ∈[1,p-1], 检验 a 是否为 p 的原根,

检验方法:a^((p-1)/p1),a^((p-1)/p2),...a^((p-1)/pm) 中是否存在一个 模p 等于 1 ,

存在的话 a 就不是 模p 的一个原根(即p-1就不是a对模p的阶),否则a就为原根。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define CLR(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long ll;
const int N = ;
int prime[N];//prime[0] 存的是素数的个数
int ppri[N];//p-1的质因子
void getPrime(){
CLR(prime , );
for(int i = ;i < N; i++){
if(!prime[i])
prime[ ++prime[] ] = i;
for(int j = ; j <= prime[] && prime[j] <= N / i; j++){
prime[ prime[j] * i ] = ;
if(i % prime[j] == ) break;
}
}
}
ll pow_m(ll a, ll n, ll m){
ll t = a % m;
ll r = ;
while(n > ){
if(n & )
r = r * t % m;
t = t * t % m;
n >>= ;
}
return r;
}
int divide(int n){//分解合数n的质因子
int cnt = ;
for(int i = ; prime[i] * prime[i] <= n; ++i){
if(n % prime[i] == ){
ppri[++cnt] = prime[i];
while(n % prime[i] == ){
n /= prime[i];
}
}
}
if(n > ) ppri[++cnt] = n;
return cnt;
}
int main(){
int p, i, a, t, f;
getPrime();
scanf("%d", &p);
int cnt = divide(p - );//p-1 的 质因子个数
for(a = ; a <= p - ; ++a){//原根从 2 到 p-1 枚举
f = ;
for(i = ; i <= cnt; ++i){
t = (p - ) / ppri[i];
if( pow_m(a, t, p) == ){
//存在a^((p-1)/ppr[i]) mod p = 1, 则 a 不是质数p的原根
f = ; break;
}
}
if(f){
printf("%d\n",a);
break;
}
}
return ;
}

51nod 1135 原根的更多相关文章

  1. 51nod 1135 原根(原根)

    题意 题目链接 Sol 可以证明素数的原根不会超过他的\(\frac{1}{4}\) 那么预处理出\(P - 1\)的所有的质因数\(p_1, p_2 \dots p_k\),暴力判断一下,如果$\e ...

  2. 51nod 1135 原根 (数论)

    题目链接 建议与上一篇欧拉函数介绍结合食用. 知识点:1.阶:a和模m互质,使a^d≡1(mod m)成立的最小正整数d称为a对模m的阶(指数)   例如: 2^2≡1(mod3),2对模3的阶为2; ...

  3. (数论)51NOD 1135 原根

    设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数)   给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P &l ...

  4. 51nod 1135 原根 就是原根...

    %%% dalao Orz ,筛素数到sqrt(n),分解ϕ(p),依次枚举判断就好了 #include<cstdio> #include<cstring> #include& ...

  5. 51Nod 1135:元根(数论)

    1135 原根  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m) ...

  6. 【51NOD】1135 原根

    [题意]给定p,求p的原根g.3<=p<=10^9. [算法]数学 [题解]p-1= p1^a1 * p2^a2 * pk^ak,g是p的原根当且仅当对于所有的pi满足g^[ (p-1)/ ...

  7. 51 Nod 1135 原根

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P ...

  8. my题库

    数论: 51nod 1240 莫比乌斯函数 51nod 1135 原根 图论: 51nod 1264 线段相交 51nod 1298 圆与三角形 dp: 数位dp: hdu 4734 51nod 10 ...

  9. Root(hdu5777+扩展欧几里得+原根)2015 Multi-University Training Contest 7

    Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Su ...

随机推荐

  1. git cherry-pick. 如何把已经提交的commit, 从一个分支放到另一个分支

    问题 在本地master提交了一个commit(8d85d4bca680a5dbcc3e5cfb3096d18cd510cc9f),如何提交的test_2分之上? 方法 使用cherry-pick 用 ...

  2. openfalcon客户端自定义push 传输到transfer

    . linux客户端部署agent . 编写脚本,比如: #!/usr/bin/env python #!-*- coding:utf8 -*- import requests import time ...

  3. HTTP协议上传boundary确定&下载content-disposition理解

    HTTP协议上传文件-协议 上传文件需要将form标签 的 ENCTYPE 属性设置为 multipart/form-data属性, 与 application/x-www-form-urlencod ...

  4. IOS密码加密

    一般使用两种加密技术 1.MD5 2.以前是SHA1加密  现在流行是SHA-2加密

  5. stl中的push_back

    v_data.push_back(pdata);这句只是把指针pdata拷贝到 vector当中的一个指针p1当中 注意是拷贝也就是说当前pdata和p1指向同一个东西,p1在vector中.并不是将 ...

  6. Linux 多线程编程 实例 2

    编写一个程序,开启3个线程,这3个线程的ID分别为A.B.C,每个线程将自己的ID在屏幕上打印10遍,要求输出结果必须按ABC的顺序显示:如:ABCABC….依次递推. 使用条件变量来实现: #inc ...

  7. google 提供webrtc 的实例使用 turnserver的方式

    google的turnserver 下载方式:svn checkout http://rfc5766-turn-server.googlecode.com/svn/branches/v3.2/ rfc ...

  8. Unity3D 材质球设置参数无效果的解决方法

    要设置shader里有下划线的属性名,而不是后面字符串的属性名. Color tmp = ,,,alpha); mat.SetColor("_Color", tmp);

  9. 2x2矩阵相乘模版

    由于Unity只有4x4矩阵,今天要做一个2x2矩阵的旋转,居然忘了顺序.故写下作为模版记录. 顺序: 下面是使用其进行旋转的C#代码: public struct Position { public ...

  10. Cmap的使用

    1.定义 template <class KEY,class ARG_KEY,class VALUE, class ARG_VALUE> class CMap:public CObject ...