UVa10820 Send a Table[欧拉函数]
Send a Table
Input: Standard Input
Output: Standard Output
When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an our and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N]. When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how many values Jimmy has to pre-calculate for a certain value of N.
题意:
洛谷U5067
题目可以根据f(x,y)用O(1)的算法算出f(x*k,y*k),其中k是任意正整数。所以,某些f函数是没有必要保存的,需要时调出其他的f函数计算下就可以了。
给出N,你需要求出最短的表里有多少个元素。
白书上的题
本质:输入n,有多少个二元组(x,y)满足1<=x,y<=n且x,y互质
设满足x<y的有f(n)个,答案为f(n)*2+1 (1,1)也满足
f(n)=phi(2)+phi(3)+...+phi(n)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+;
int phi[N],s[N],n;
void phiTable(int n){
phi[]=;
for(int i=;i<=n;i++) if(!phi[i])
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
for(int i=;i<=n;i++)
s[i]=s[i-]+phi[i];
}
int main(){
phiTable(N-);
while(cin>>n){
printf("%d\n",*s[n]-);
}
}
UVa10820 Send a Table[欧拉函数]的更多相关文章
- Uva 10820 Send a Table(欧拉函数)
对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...
- UVA 10820 - Send a Table 数论 (欧拉函数)
Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...
- UVa 10820 (打表、欧拉函数) Send a Table
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...
- uva10820 send a table (nlogn求1-n欧拉函数值模版
//重点就是求1-n的欧拉函数啦,重点是nlogn求法的版 //大概过程类似于筛选法求素数 #include<cstdio> #include<iostream> #inclu ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Reflect(欧拉函数)
Reflect Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- Web前端开发工程师基本要求
一位好的Web前端开发工程师在知识体系上既要有广度,又要有深度,所以很多大公司即使出高薪也很难招聘到理想的前端开发工程师.现在说的重点不在于讲解技术,而是更侧重于对技巧的讲解.技术非黑即白,只有对和错 ...
- Hybrid框架UI重构之路:三、工欲善其事,必先利其器
上文回顾:Hybird框架UI重构之路:二.事出有因 工欲善其事,必先利其器,事是重构的目标,器是开发环境. 这篇文章将讲述重构时的UI框架的目录结构,且需要使用的开发工具. 目录结构 demo : ...
- TABLE CONTROL隐藏列和固定列的实现
一.设置固定列 需求:为了方便对主要关心信息地查看,用户希望TABLE CONTROL左边的一列或者几列在屏幕上固定.针对用户这样子的需求, 我们首先会想到类似与屏幕编辑/可见等字段属性设置,但是此方 ...
- 如何排查sharepoint2010用户配置文件同步服务启动问题
用户配置文件同步服务与 Microsoft Forefront Identity Manager (FIM) 交互,以与外部系统(如目录服务和业务系统)同步配置文件信息.启用用户配置文件同步服务时,将 ...
- C#复习⑨(附带C#参考答案仅限参考)
C#复习⑨ 2016年6月22日 14:28 C#考试题&参考答案:http://pan.baidu.com/s/1sld4K13 Main XML Comments & Pointe ...
- 定做属于自己的Lodop安装程序
WEB控件Lodop自发布以来,受到广大开发人员的喜爱,从如下博文分析看看: http://blog.sina.com.cn/s/blog_721e77e501011nyb.html 无论是好评率还是 ...
- spring + spring mvc + mybatis + react + reflux + webpack Web工程例子
前言 最近写了个Java Web工程demo,使用maven构建: 后端使用spring + spring mvc + mybatis: 前端使用react + react-router+ webpa ...
- JavaScript Patterns 6.1 Classical Versus Modern Inheritance Patterns
In Java you could do something like: Person adam = new Person(); In JavaScript you would do: var ada ...
- python之装饰器
一.简单装饰器: #定义装饰器函数 def W1(main_func): def outer(): print("before") main_func() print(" ...
- PHP 取前一天或后一天、一个月时间
//获得当前时间 //date()格式化时间返回String类型. date("Y-m-d H:i:s") $current_date = date(’Y-m-d’ ...