UVa10820 Send a Table[欧拉函数]
Send a Table
Input: Standard Input
Output: Standard Output
When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ever pass the time limit. However hard you try, you just can't discover the proper break-off conditions that would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half an our and produce a table of answers for all possible input values, encode this table into a program, submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating, but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a 'technique'. But however hard he tried, he wasn't able to squeeze all his pre-calculated values into a program small enough to pass the judge. The situation looked hopeless, until he discovered the following property regarding the answers: the answers where calculated from two integers, but whenever the two input values had a common factor, the answer could be easily derived from the answer for which the input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range [1, N]. When he knows Answer(x, y), he can easily derive Answer(k*x, k*y), where k is any integer from it by applying some simple calculations involving Answer(x, y) and k. For example if N=4, he only needs to know the answers for 11 out of the 16 possible input value combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2), Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric, so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which indicates the value of N. Input is terminated by a line which contains a zero. This line should not be processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how many values Jimmy has to pre-calculate for a certain value of N.
题意:
洛谷U5067
题目可以根据f(x,y)用O(1)的算法算出f(x*k,y*k),其中k是任意正整数。所以,某些f函数是没有必要保存的,需要时调出其他的f函数计算下就可以了。
给出N,你需要求出最短的表里有多少个元素。
白书上的题
本质:输入n,有多少个二元组(x,y)满足1<=x,y<=n且x,y互质
设满足x<y的有f(n)个,答案为f(n)*2+1 (1,1)也满足
f(n)=phi(2)+phi(3)+...+phi(n)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=5e5+;
int phi[N],s[N],n;
void phiTable(int n){
phi[]=;
for(int i=;i<=n;i++) if(!phi[i])
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
for(int i=;i<=n;i++)
s[i]=s[i-]+phi[i];
}
int main(){
phiTable(N-);
while(cin>>n){
printf("%d\n",*s[n]-);
}
}
UVa10820 Send a Table[欧拉函数]的更多相关文章
- Uva 10820 Send a Table(欧拉函数)
对每个n,答案就是(phi[2]+phi[3]+...+phi[n])*2+1,简单的欧拉函数应用. #include<iostream> #include<cstdio> # ...
- UVA 10820 - Send a Table 数论 (欧拉函数)
Send a Table Input: Standard Input Output: Standard Output When participating in programming contest ...
- UVa 10820 (打表、欧拉函数) Send a Table
题意: 题目背景略去,将这道题很容易转化为,给出n求,n以内的有序数对(x, y)互素的对数. 分析: 问题还可以继续转化. 根据对称性,我们可以假设x<y,当x=y时,满足条件的只有(1, 1 ...
- uva10820 send a table (nlogn求1-n欧拉函数值模版
//重点就是求1-n的欧拉函数啦,重点是nlogn求法的版 //大概过程类似于筛选法求素数 #include<cstdio> #include<iostream> #inclu ...
- UVa 10820 - Send a Table(欧拉函数)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Reflect(欧拉函数)
Reflect Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- POJ 2480 (约数+欧拉函数)
题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...
- hdu2588 GCD (欧拉函数)
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数. (文末有题) 知 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
随机推荐
- SAP中查询用户操作日志的事务码
事务码:STAD 注意:查询的时间跨度范围不要太大,否则会很慢! 事务码:ST03N 工作负载和性能统计
- Android中的Interpolator
Android中的Interpolator Interpolator用于动画中的时间插值,其作用就是把0到1的浮点值变化映射到另一个浮点值变化. 本文列出Android API提供的Interpola ...
- Fragment与FragmentActivity的关系
前阵用viewpaper+fragment做滑动引导,查阅了下网上的资料,发现在有两种做法,一个是自建类直接继承Activity另一种是继承FragmentActivity,很是迷惑,在查了些goog ...
- iOS通用的MVC模式项目框架MobileProject
最近项目比较不赶的情况下,决定把一些通用.常用的内容集成在一个项目框架中,意在新项目中可以快速搭建:其实经过几个项目后,总是有一些重复的创建工作,可以使用本项目的内容直接进行开发:采用的是MVC的分层 ...
- mvc上传到云虚拟机的问题解决
我用vs2015写了个小网站,.Net Framework4.5. mvc 5,发布到本机iis上正常,在美橙申请了一个云虚拟机,发布过程中遇到的一些问题记录如下: 1.服务器支持的版本比较低 上传后 ...
- Http协议与TCP协议简单理解
TCP协议对应于传输层,而HTTP协议对应于应用层,从本质上来说,二者没有可比性.Http协议是建立在TCP协议基础之上的,当浏览器需要从服务器获取网页数据的时候,会发出一次Http请求.Http会通 ...
- IO流05--毕向东JAVA基础教程视频学习笔记
Day20 10 创建java文件列表11 Properties简述12 Properties存取13 Properties存取配置文件14 Properties练习15 PrintWriter16 ...
- mac版 android破解软件下载安装
1 apktool下载安装 下载地址https://code.google.com/p/android-apktool/ [1].下载apktool.jar — 解压 [2].下载Mac上的辅助工具a ...
- sql server使用中遇到的问题记录
一.sql server 不能连接远程服务器,但可以连接本地的数据库 我目前用的是sql server 2012 sp1,用着用着突然就不能连接远程服务器上的数据库了,崩溃了一天... 修复试了,卸载 ...
- javascript-建造者模式
建造者模式笔记 1.工厂模式主要是为了创建对象实例或者类簇(抽象工厂),关心的是最终产出(创建)的是什么,不关心你创建的整个过程,仅仅需要知道你最终创建的结果 2.建造者模式目的也是为了创建对象,但是 ...