1、包装类都有哪些?

基本类型都有对应的包装类型,这些包装类提供了一种面向对象的方式来处理基本数据类型,允许它们被用于需要对象的场景,如集合框架、泛型等。

对应关系:

基本类型 包装类型
boolean Boolean
byte Byte
char Character
float Float
int Integer
long Long
short Short
double Double

2、包装类特点

  • 封装性:所有的包装类都是 final 类,这意味着它们不能被继承。这种设计确保了包装类的行为和特性的一致性,从而避免了子类可能引入的不确定性。
  • 不可变性:包装类的实例一旦被创建后,其中保存的基本数据类型数据就不能再被改变。这种不可变性使得包装类在多线程环境中更加安全,避免了因数据被意外修改而导致的错误。
  • 提供方法:包装类封装了许多实用的方法,提供了丰富的功能。例如,它们支持数据类型转换、判断字符串的大小写、以及获取最大值和最小值等。
  • 继承关系:除了 Character 和 Boolean 之外,其他所有的包装类都继承自 Number 类。这种继承关系使得这些包装类能够共享一些通用的功能和特性,例如数字的比较和转换,这为在不同数值类型之间的操作提供了一致的接口。

代码为证(继承Number类并实现intValue方法的类):

3、为什么会出现包装类?

既然有基本类型了,为什么还会出现对应的包装类?

我觉得根本原因还是因为Java是面向对象的语言,基本数据类型不能参与面向对象编程:

对象操作:在Java中,许多集合类和框架方法需要对象作为参数,而不是基本数据类型。为了满足这一需求,包装类提供了将基本数据类型转换为对象的机制。通过使用包装类,我们可以轻松地在这些方法中传递基本数据类型。

Null值处理:基本数据类型无法为null,而包装类则可以。这一特性在某些情况下非常有用,例如在方法参数中,需要表示可选值或缺省值时。通过使用包装类,我们能够更灵活地处理这些场景,确保代码的健壮性和可读性。这种设计使得我们在处理数据时,可以更方便地进行null值检查,并在需要时安全地进行区分,从而提高了代码的灵活性。

4、装箱与拆箱

装箱(Boxing):是将基本数据类型转换为相应的包装类的过程。

拆箱(Unboxing):是将包装类转换为基本数据类型的过程。

手动装箱、拆箱

手动装箱:使用一个本地类型的值创建一个对应包装类对象的过程

1 int num = 10;
2
3 Integer int1 = new Integer(num); // 手动装箱方式一
4
5 Integer int2 = Integer.valueOf(num); // 手动装箱方式二

手动拆箱:使用 Integer 类型对象的 intValue() 方法来获取这个对象的 int 值

1 Integer number= new Integer(23);
2 int num = number.intValue(); // 手动拆箱

自动装箱、拆箱

Java 5引入了自动装箱(Auto-boxing)和自动拆箱(Auto-unboxing)机制,简化了基本数据类型与包装类之间的转换过程。

自动装箱是将基本数据类型自动转换为其对应的包装类对象的过程。自动装箱的底层原理其实就是通过调用包装类的valueOf()方法来实现的;同理自动拆箱就是通过调用包装类的xxxValue()方法来实现的。

以Integer 与 int 举例:

 Integer x = 2;     // 装箱 调用了 Integer.valueOf(2)
int y = x; // 拆箱 调用了 x.intValue()

5、包装类的缓存池

简要介绍

Java中的包装类缓存机制是为了优化性能和节省内存而设计的。

它为整型(Byte、Short、Integer、Long)、字符型(Character)和布尔型(Boolean)的包装类提供了缓存,确保在这些类型的小范围值之间可以复用对象。而对于浮点数类型的包装类(Float、Double),则没有这种缓存机制,意味着每次都需要创建新的对象。

这样一来,Java在处理常用值时更加高效,但在浮点数处理上则相对简单直接。

缓存范围

对于 Integer 类,Java会缓存范围在 -128 到 127 之间的所有整数。

对于 Byte、Short 和 Character 类,缓存的范围也是类似的。具体范围如下:

Byte:-128 到 127
Short:-128 到 127
Character:0 到 127(即所有的ASCII字符)
Boolean:只有 true 和 false 两个值会被缓存。

如何触发缓存

只有调用 valueOf() 方法时,如果要创建的值已经被缓存,则会触发缓存机制。如果要创建的 Integer 对象的值在预定范围内,则返回缓存的对象,如果不在范围内,则直接新创建一个对象。

我们来查看 Integer 类的 valueOf() 方法的源代码(valueOf() 方法就是先判断值是否在缓存池中,如果在的话就直接返回缓存池的内容,不存在就创建一个新对象,跟上面我们所说的逻辑是一致):

 1     /**
2 * Returns an {@code Integer} instance representing the specified
3 * {@code int} value. If a new {@code Integer} instance is not
4 * required, this method should generally be used in preference to
5 * the constructor {@link #Integer(int)}, as this method is likely
6 * to yield significantly better space and time performance by
7 * caching frequently requested values.
8 *
9 * This method will always cache values in the range -128 to 127,
10 * inclusive, and may cache other values outside of this range.
11 *
12 * @param i an {@code int} value.
13 * @return an {@code Integer} instance representing {@code i}.
14 * @since 1.5
15 */
16 public static Integer valueOf(int i) {
17 if (i >= IntegerCache.low && i <= IntegerCache.high)
18 return IntegerCache.cache[i + (-IntegerCache.low)];
19 return new Integer(i);
20 }

编译器会在自动装箱过程调用 valueOf() 方法,因此多个值相同且值在缓存池范围内的 Integer 实例使用自动装箱来创建,那么就会引用相同的对象。

1 Integer m = 123;
2 Integer n = 123;
3 System.out.println(m == n); // true

在 Java 8 中,Integer 缓存池的大小默认为 -128~127。

在 jdk 1.8 所有的数值类缓冲池中,Integer 的缓冲池 IntegerCache 很特殊,这个缓冲池的下界是 - 128,上界默认是 127,但是这个上界是可调的,在启动 jvm 的时候,通过 -XX:AutoBoxCacheMax=<size> 来指定这个缓冲池的大小,该选项在 JVM 初始化的时候会设定一个名为 java.lang.IntegerCache.high 系统属性,然后 IntegerCache 初始化的时候就会读取该系统属性来决定上界。

下面是IntegerCache的源码(其中红色部分正是获取系统属性重新设置上界的逻辑)

 1     private static class IntegerCache {
2 static final int low = -128;
3 static final int high;
4 static final Integer cache[];
5
6 static {
7 // high value may be configured by property
8 int h = 127;
9 String integerCacheHighPropValue =
10 sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
11 if (integerCacheHighPropValue != null) {
12 try {
13 int i = parseInt(integerCacheHighPropValue);
14 i = Math.max(i, 127);
15 // Maximum array size is Integer.MAX_VALUE
16 h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
17 } catch( NumberFormatException nfe) {
18 // If the property cannot be parsed into an int, ignore it.
19 }
20 }
21 high = h;
22
23 cache = new Integer[(high - low) + 1];
24 int j = low;
25 for(int k = 0; k < cache.length; k++)
26 cache[k] = new Integer(j++);
27
28 // range [-128, 127] must be interned (JLS7 5.1.7)
29 assert IntegerCache.high >= 127;
30 }
31
32 private IntegerCache() {}
33 }

验证包装类的缓存池(以Integer为例)

1 Integer x = new Integer(123);
2 Integer y = new Integer(123);
3 System.out.println(x == y); // false
4 Integer z = Integer.valueOf(123);
5 Integer k = Integer.valueOf(123);
6 System.out.println(z == k); // true

6、补充

基本类型与包装类如何选择

  • 内存占用和性能:基本数据类型直接在栈中分配内存,占用空间较少,性能更高。而包装类是对象类型,需要在堆中分配内存,GC管理,因此会稍微影响性能
  • 使用场景:一般来说,在性能要求较高的代码中,我们优先使用基本数据类型。而在需要面向对象的场景下(例如集合类中需要使用对象类型),我们会选择包装类。包装类还提供了一些静态方法和常量,比如Integer.parseInt()、Double.NaN等,这些方法和属性是基本数据类型所不具备的

基本类型与包装类==比较:

只要判断中有基本数据类型,则判断的就是值是否相等,也就是说包装类在这时会自动拆箱。

1 public class Example {
2 public static void main(String[] args) {
3 Integer i1 = 10;
4 int i2 = 10;
5
6 System.out.println(i1 == i2);
7 }
8 }

基本类型与包装类存储区别(基本类型(primitive types)和包装类的存储位置取决于它们是在哪里声明):

局部变量(Local Variables)

栈(Stack):如果基本类型是作为方法中的局部变量声明的,那么它们会被存储在栈中。栈用于管理方法调用和局部变量,具有后进先出(LIFO)的行为。自动分配和释放:当方法被调用时,其局部变量会在栈上分配空间,并且在方法执行完毕后自动释放。

成员变量(Instance Variables)

堆(Heap):如果基本类型是类的成员变量(即实例变量),那么它们会随着对象一起被存储在堆中。每个对象都有自己的成员变量副本,这些数据与对象本身一同存放在堆内存中。生命周期依赖于对象:成员变量的生命周期与所属的对象相同,只要对象存在,成员变量就存在;对象被垃圾回收时,成员变量也会被回收。

静态变量(Static Variables)

方法区/元空间(Method Area/Metaspace):静态变量(无论是否为基本类型)属于类的一部分,而不是某个特定的对象实例。它们通常存储在方法区(Java 7及之前)或元空间(Java 8及之后)。不过,在某些实现中,静态变量也可能直接存放在堆中,因为方法区本身可以被视为堆的一部分。
共享性:静态变量由所有对象实例共享,因此它们不是随单个对象创建而创建,而是随着类加载到 JVM 时初始化 。

代码举例:

 1 public class Example {
2 // 成员变量,存储在堆中
3 int instanceVar;
4
5 // 静态变量,存储在方法区或元空间
6 static int staticVar;
7
8 public void method() {
9 // 局部变量,存储在栈中
10 int localVar = 10;
11 }
12 }

【Java 温故而知新系列】基础知识-03 基本类型对应之包装类的更多相关文章

  1. Java多线程系列--“基础篇”03之 Thread中start()和run()的区别

    概要 Thread类包含start()和run()方法,它们的区别是什么?本章将对此作出解答.本章内容包括:start() 和 run()的区别说明start() 和 run()的区别示例start( ...

  2. Java多线程系列 基础篇03 线程的优先级和守护线程

    1. 线程优先级 现代操作系统中基本上使用时间分片的方式调度线程,通过设置线程优先级,使优先级高的线程获得时间片的次数多于优先级低的线程. 在java 线程中,通过一个整形变量prority来控制优先 ...

  3. Java多线程系列--“基础篇”04之 synchronized关键字

    概要 本章,会对synchronized关键字进行介绍.涉及到的内容包括:1. synchronized原理2. synchronized基本规则3. synchronized方法 和 synchro ...

  4. Java多线程系列--“基础篇”09之 interrupt()和线程终止方式

    概要 本章,会对线程的interrupt()中断和终止方式进行介绍.涉及到的内容包括:1. interrupt()说明2. 终止线程的方式2.1 终止处于“阻塞状态”的线程2.2 终止处于“运行状态” ...

  5. Java多线程系列--“基础篇”11之 生产消费者问题

    概要 本章,会对“生产/消费者问题”进行讨论.涉及到的内容包括:1. 生产/消费者模型2. 生产/消费者实现 转载请注明出处:http://www.cnblogs.com/skywang12345/p ...

  6. Java多线程系列--“基础篇”05之 线程等待与唤醒

    概要 本章,会对线程等待/唤醒方法进行介绍.涉及到的内容包括:1. wait(), notify(), notifyAll()等方法介绍2. wait()和notify()3. wait(long t ...

  7. Java多线程系列--“基础篇”06之 线程让步

    概要 本章,会对Thread中的线程让步方法yield()进行介绍.涉及到的内容包括:1. yield()介绍2. yield()示例3. yield() 与 wait()的比较 转载请注明出处:ht ...

  8. Java多线程系列--“基础篇”07之 线程休眠

    概要 本章,会对Thread中sleep()方法进行介绍.涉及到的内容包括:1. sleep()介绍2. sleep()示例3. sleep() 与 wait()的比较 转载请注明出处:http:// ...

  9. Java多线程系列--“基础篇”08之 join()

    概要 本章,会对Thread中join()方法进行介绍.涉及到的内容包括:1. join()介绍2. join()源码分析(基于JDK1.7.0_40)3. join()示例 转载请注明出处:http ...

  10. Java多线程系列--“基础篇”10之 线程优先级和守护线程

    概要 本章,会对守护线程和线程优先级进行介绍.涉及到的内容包括:1. 线程优先级的介绍2. 线程优先级的示例3. 守护线程的示例 转载请注明出处:http://www.cnblogs.com/skyw ...

随机推荐

  1. v-if的使用方式

    一.语法 其中<span></span>可以换成<div></div>, <div></div>的可以换成<templet ...

  2. att&ack框架学习笔记5

    深度解读ATT&CK框架前言:在上一篇文章中,我们简单介绍了这个由美国研究机构MITRE于2014年推出的新型攻击框架ATT&CK的相关概念.ATT&CK是将已知攻击者的行为汇 ...

  3. 【分享】用typescript结合react编写代码,引入第三方库模块报错的解决办法

    1.前提 我用  npx create-react-app my-react-ts-app --template typescript  创建了一个应用,加了typescript到项目中; 问题来了, ...

  4. 适合才最美:Shiro安全框架使用心得

    大家好,我是 V 哥.Apache Shiro 是一个强大且灵活的 Java 安全框架,专注于提供认证.授权.会话管理和加密功能.它常用于保护 Java 应用的访问控制,特别是在 Web 应用中.相比 ...

  5. 4G模组PSM+超低功耗,手把手教你!

    ​  合宙4G-Cat.1模组支持三种功耗模式: 常规模式 低功耗模式 PSM+模式 用户可以根据不同的应用场景,按需选择不同的合宙4G-Cat.1模组功耗模式,以及三种功耗模式之间的相互转换. 合宙 ...

  6. 成本立降50%!在EKS上借助Karpenter部署大模型

    原文链接: https://aws.amazon.com/cn/blogs/containers/scaling-a-large-language-model-with-nvidia-nim-on-a ...

  7. 2.TP6的入门-分页类的改写

    看了看推荐的分页类的使用,还是很简单的,可是自己去尝试改写生成的分页类结构就会很麻烦,总是不成功,后来发现手册里面还有这个 就说你想重写分页类,就需要这样做 赶紧实践了一下,先改这里的provider ...

  8. Django之跨域

    解决跨域请求问题可以从前端解决也可以通过配置后台解决,通过配置后台允许跨域可以解决前端的一些麻烦.Django通过中间件实现允许跨域. 1.安装django-cors-headers中间件 pip i ...

  9. vagrant搭建开发环境

    一:我们为什么需要用这玩意 我们在开发中经常会面临的问题:环境不一致,有人用Mac有人用Windos还有几个用linux的,而我们的服务器都是linux. 在我本地是可以的啊,我测了都,没有问题啊,然 ...

  10. Blazor 组件库 BootstrapBlazor 中Carousel组件介绍

    组件介绍 Carousel 走马灯的作用是在有限空间内,循环播放同一类型的图片.文字等内容. 代码如下: <Carousel Images="@Images" Width=& ...