python解决上楼梯问题
假设一段楼梯共n(n>1)个台阶,小朋友一步最多能上3个台阶,那么小朋友上这段楼梯一共有多少种方法
(此为京东2016年笔试题目)
假设n为15,从第15个台阶上往回看,有3种方法可以上来(从第14个台阶上一步迈1个台阶上来,从第13个台阶上一步迈2个台阶上来,从第12个台阶上一步迈3个台阶上来),
同理,第14个、13个、12个台阶都可以这样推算,从而得到公式f(n) = f(n-1) + f(n-2) + f(n-3),其中n=15、14、13、...、5、4。然后就是确定这个递归公式的结束条件了,
第一个台阶只有1种上法,第二个台阶有2种上法(一步迈2个台阶上去、一步迈1个台阶分两步上去),第三个台阶有4种上法
代码如下
n = int(input())
a = 1
b = 2
c = 4
for i in range(n-3):
c, b, a = a+b+c, c, b
print(c)
截图如下

(来让小朋友把这些走法挨个走一遍......)
这里提一下上面的
c, b, a = a+b+c, c, b
这段代码的用法
这段代码是先计算右边的数值,先计算a + b + c
然后从右边开始先将b的值赋给a,再将c的值赋给b,最后将a + b + c的值赋给c
这段代码等价于
m = a + b +c
a = b
b = c
c = m
(其实我还是喜欢下面这样写,容易懂)
python解决上楼梯问题的更多相关文章
- java 动态规划解决上楼梯问题
问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 ...
- 高德API+Python解决租房问题(.NET版)
源码地址:https://github.com/liguobao/58HouseSearch 在线地址:58公寓高德搜房(全国版):http://codelover.link:8080/ 周末闲着无事 ...
- python解决使用镜像源来安装包
一.问题在进行python包安装的时候出现一个问题就是无法进行安装,且出现了如下的错误 报错代码 Retrying (Retry(total=4, connect=None, read=None, r ...
- 解题(GoUpstairs -- 上楼梯)
题目描述 有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶.2阶.3阶.请实现一个方法,计算小孩有多少种上楼的方式.为了防止溢出,请将结果Mod 1000000007 给定一个正整数int n, ...
- 《用Python解决数据结构与算法问题》在线阅读
源于经典 数据结构作为计算机从业人员的必备基础,Java, c 之类的语言有很多这方面的书籍,Python 相对较少, 其中比较著名的一本 problem-solving-with-algorithm ...
- 有关科学计算方面的python解决
在科学计算方面,一般觉得matlab是一个超强的东西.此外还有R. 至于某种语言来说,一般都要讲究一些特别的算法,包含但不限于: 矩阵方面的计算 指数计算 对数计算 多项式运算 各类方程求解 总之.仅 ...
- appium+python解决每次运行代码都提示安装Unlock以及AppiumSetting的问题
appium+python解决每次运行代码都提示安装Unlock以及AppiumSetting的问题(部分安卓机型) 1.修改appium-android-driver\lib下的android-he ...
- 上楼梯问题(递归C++)
[问题描述] 小明上楼梯,一次可以迈1步,2步和3步,假设楼梯共有n个台阶,输出他所有的走法. [代码展示] #include<iostream>using namespace std;i ...
- python笔记-用python解决小学生数学题【转载】
本篇转自博客:上海-悠悠 原文地址:http://www.cnblogs.com/yoyoketang/tag/python/ 前几天有人在群里给小编出了个数学题: 假设你有无限数量的邮票,面值分别为 ...
随机推荐
- Android Studio教程01-的工程和目录结构解析
目录 1.主目录 1.1. app目录 1.2.项目资源文件夹res 2. 理解build.gradle文件 2.1. 外部build.gradle 2.2. app文件下的build.gradle ...
- 用 Python 描述 Cookie 和 Session
这篇文章我们来聊聊Cookie和Session,网上有很多关于这两个知识点的描述,可惜的是大部分都没有示例代码,因此本文的重点在于示例代码. 环境 Python3.6.0 Bottle0.12.15 ...
- U盘制作启动盘
https://jingyan.baidu.com/article/15622f24322f52fdfcbea58b.html UltraISO v9.65.3237 官方版及注册码 保存为uikey ...
- Java基础系列--09_集合2
昨天介绍了集合的主要架构体系,今天主要的目的是学习集合的迭代器的遍历和List的特有功能. 迭代器: 概述:由于多种集合的数据结构不同,所以存储方式不同,取出方式也不同.但是他们都是有判断和获 ...
- 【java学习】Intelli Idea集成开发工具的使用
== mac版直接下载地址: https://download.jetbrains.com/idea/ideaIU-2018.1.6.dmg ==mac配置java环境变量: https://ji ...
- SpringCloud-Gateway
在微服务架构中,我们会遇到这样的问题:1.在调用微服务时,需要鉴权,微服务不能任意给外部调用.但是,多个微服务如果都需要同一套鉴权规则,明显会产生冗余,如果鉴权方法需要修改,则需要改动多个地方.2.在 ...
- MySQL慢查询&执行计划
参考文章: https://blog.csdn.net/tiantianw/article/details/53334566 http://www.cnblogs.com/luyucheng/p/62 ...
- 安装sql server2017出现错误:Visual Studio 运行时"Microsoft visual c++2017 X64 Minimum Runtime - 14.10.25008"需要修复
安装sql server 2017 Developer Edition时,安装选择“基本”,发生如下错误: 解决方法: 1.进入控制面板→程序中,找到“Microsoft visual c++2017 ...
- win10x64 批处理自动安装打印机
系统版本:Windows 10企业版 64位(10.0 ,版本17134)- 中文(简体) 话不多说,直接上脚本: REM 提升管理员权限 @echo off chcp 65001 >nul s ...
- vue中watch检测到不到对象属性的变化的解决方法
watch: { option: { handler(newVal) { console.log(newVal); }, deep: true, immediate: true } }, 需要深层wa ...