第一步代码:

import turtle

class Stack:
def __init__(self):
self.items = []
def isEmpty(self):
return len(self.items) == 0
def push(self, item):
self.items.append(item)
def pop(self):
return self.items.pop()
def peek(self):
if not self.isEmpty():
return self.items[len(self.items) - 1]
def size(self):
return len(self.items) def drawpole_3():#画出汉诺塔的poles
t = turtle.Turtle()
t.hideturtle()
def drawpole_1(k):
t.up()
t.pensize(10)
t.speed(100)
t.goto(400*(k-1), 100)
t.down()
t.goto(400*(k-1), -100)
t.goto(400*(k-1)-20, -100)
t.goto(400*(k-1)+20, -100)
drawpole_1(0)#画出汉诺塔的poles[0]
drawpole_1(1)#画出汉诺塔的poles[1]
drawpole_1(2)#画出汉诺塔的poles[2] def creat_plates(n):#制造n个盘子
plates=[turtle.Turtle() for i in range(n)]
for i in range(n):
plates[i].up()
plates[i].hideturtle()
plates[i].shape("square")
plates[i].shapesize(1,8-i)
plates[i].goto(-400,-90+20*i)
plates[i].showturtle()
return plates def pole_stack():#制造poles的栈
poles=[Stack() for i in range(3)]
return poles def moveDisk(plates,poles,fp,tp):#把poles[fp]顶端的盘子plates[mov]从poles[fp]移到poles[tp]
mov=poles[fp].peek()
plates[mov].goto((fp-1)*400,150)
plates[mov].goto((tp-1)*400,150)
l=poles[tp].size()#确定移动到底部的高度(恰好放在原来最上面的盘子上面)
plates[mov].goto((tp-1)*400,-90+20*l) def moveTower(plates,poles,height,fromPole, toPole, withPole):#递归放盘子
if height >= 1:
moveTower(plates,poles,height-1,fromPole,withPole,toPole)
moveDisk(plates,poles,fromPole,toPole)
poles[toPole].push(poles[fromPole].pop())
moveTower(plates,poles,height-1,withPole,toPole,fromPole) myscreen=turtle.Screen()
drawpole_3()
n=int(input("请输入汉诺塔的层数并回车:\n"))
plates=creat_plates(n)
poles=pole_stack()
for i in range(n):
poles[0].push(i)
moveTower(plates,poles,n,0,2,1)
myscreen.exitonclick()
第二步用turtle画(无法截动图)汉罗塔4层如下:


Python汉罗塔的更多相关文章

  1. 汉罗塔问题——Python

    汉罗塔问题就是一个循环的过程:* (有两种情况) 如果被移动盘只有一个盘子,可以直接移动到目的盘 但是被移动盘有多个盘子,就先需要将上面的n-1个盘子通过目的盘移动到辅助盘,然后将被移动盘最下面一个盘 ...

  2. Python实现常见算法[3]——汉罗塔递归

    #!/usr/bin/python # define three list var. z1 = [1,2,3,4,5,6,7,"1st zhu"] z2 = ["2st ...

  3. python汉诺塔问题的递归理解

    一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下 ...

  4. Python汉诺塔问题递归算法与程序

    汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...

  5. Python汉诺塔

    import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.it ...

  6. Python汉诺塔问题

    汉诺塔描述 古代有一座汉诺塔,塔内有3个座A.B.C,A座上有n个盘子,盘子大小不等,大的在下,小的在上,如图所示.有一个和尚想把这n个盘子从A座移到C座,但每次只能移动一个盘子,并且自移动过程中,3 ...

  7. Python 汉诺塔

    在汉诺塔游戏中,有三个分别命名为A.B.C得塔座,几个大小各不相同,从小到大一次编号得圆盘,每个原盘中间有一个小孔.最初,所有得圆盘都在A塔座上,其中最大得圆盘在最下面,然后是第二大,以此类推. 游戏 ...

  8. Python 汉诺塔游戏

    #n 多少个盘子 def hanoi(n,x,y,z): : print(x,'→',z) else: hanoi(n-, x, z,y) #将前n-1个盘子从X移动到y上 print(x,'→',z ...

  9. [python]汉诺塔问题

    相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏.该游戏是在一块铜板装置上,有三根杆(编号A.B.C),在A杆自下而上.由大到小按顺序放置64个金盘(如下图).游戏的目标:把A杆上的金盘全部 ...

随机推荐

  1. [LeetCode] N-ary Tree Level Order Traversal N叉树层序遍历

    Given an n-ary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  2. Java 初始化、final、清理

    1 为什么需要无参构造器? 第一个是继承需要 super 调用父类的构造器(父类构造器必须存在且不为 private.可以是无参/默认构造器,也可以是有参构造器),特别的如果父类不包含无参构造器的话, ...

  3. 不让浏览器缓存index.html

    参考文档:https://www.2cto.com/ask/question/4598 location = /index.html { add_header Cache-Control " ...

  4. scheduling while atomic和bad: scheduling from the idle thread(转)

    https://blog.csdn.net/shanzhizi/article/details/22949121 https://blog.csdn.net/wwwtovvv/article/deta ...

  5. DjangoRestFramework学习三之认证组件、权限组件、频率组件、url注册器、响应器、分页组件

    DjangoRestFramework学习三之认证组件.权限组件.频率组件.url注册器.响应器.分页组件   本节目录 一 认证组件 二 权限组件 三 频率组件 四 URL注册器 五 响应器 六 分 ...

  6. [dev] EPOLLOUT的应用场景

    问题 什么场景下,才需要epoll EPOLLOUT消息呢?也就是监听write 分析 找到一篇知乎,基本上读完就明白了 https://www.zhihu.com/question/22840801 ...

  7. 第二单元电梯调度作业 By Wazaki

    figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...

  8. Typora极简教程

    Typora极简教程 ” Markdown 是一种轻量级标记语言,创始人是约翰·格鲁伯(John Gruber).它允许人们 “使用易读易写的纯文本格式编写文档,然后转换成有效的 HTML 文档.” ...

  9. jmeter常用插件介绍

    一.下载安装及使用 下载地址:jmeter-plugins.org 安装:下载后文件为plugins-manager.jar格式,将其放入jmeter安装目录下的lib/ext目录,然后重启jmete ...

  10. JsonPath如何获取JSON数据中的值

    场景: 发送接口请求后,得到请求结果值是Json数据, 需要从Json数据信息中提取字段值. 响应值字符与字符之间有空格,导致用正则表达式方法提取比较麻烦,于是用java的JsonPath方法提取快速 ...